

Clinica Cardiologica Università degli Studi di Padova Direttore: Prof. Sabino Iliceto

VALVULAR HEART DISEASE: WHAT DO WE LEARN FROM 3D ECHOCARDIOGRAPHY? Luigi P. Badano**, MD, FESC

**Dr. Badano has received honoraries and research grants from GE Healthcare, Sorin cardio S.p.A., Actelion, Edwards Lifesciences *No off-label use of device

3D ECHO IN HEART VALVE DISEASES

- LV Geometry and Function (competitive with CMR)
- RV Geometry and Function (not previously possible with 2D)
- LA and RA Geometry and Function
- Valve morphology and spatial relationships
 - > unique views
 - > unprecedented quantitation possibilities
- Advanced quantification

3D ECHO IN HEART VALVE DISEASES Detailed mitral valve anatomy

3D ECHO IN HEART VALVE DISEASES Not just fancy images! Functional Mitral Regurgitation

6	Automatic Measurements	
	AP Diameter:	4.5 cm
	AL-PM Diameter:	4.9 cm
l	Sphericity Index:	0.9
1	Commissural Diameter:	4.7 cm
	Non-planar Angle:	143.0°
١	Anterior Annulus Length:	6.4 cm
	Posterior Annulus Length:	8.8 cm
1	Annulus Circumference:	15.2 cm
	Annulus Area (2D) :	16.4 cm²
	CL Length (2D):	5.1 cm
15	CL Length:	5.6 cm

Tenting Area = 1.4 cm² Coaptation Depth= 1.0 cm

Tenting Volume= 6 ml

University of Padua

Watanabe et al J Am Coll Cardiol 2005

3D ECHO IN HEART VALVE DISEASES Quantitation of Mitral Regurgitation

 $0.27~{\rm cm}^2$

 $0.40 \mathrm{~cm}^2$

University of Padua

VC/ERO

 $0.19~{\rm cm}^2$

Courtesy of N. De Michelis

3D ECHO IN HEART VALVE DISEASES Not just fancy images! Mitral Stenosis Quantitation

3D ECHO IN HEART VALVE DISEASES Accurate Measurement of Mitral Valve Area

3D ECHO IN HEART VALVE DISEASES Accurate Measurement of Mitral Valve area

Journal of the American College of Cardiology © 2004 by the American College of Cardiology Foundation Published by Elsevier Inc.

Vol. 43, No. 11, 2004 ISSN 0735-1097/04/\$30.00 doi:10.1016/j.jacc.2004.01.046

Real-Time Three-Dimensional Echocardiography for Rheumatic Mitral Valve Stenosis Evaluation

An Accurate and Novel Approach

José Zamorano, MD,* Pedro Cordeiro, MD,* Lissa Sugeng, MD,† Leopoldo Perez de Isla, MD,* Lynn Weinert, MD,† Carlos Macaya, MD,* Enrique Rodríguez, MD,* Roberto M. Lang, MD† Madrid, Spain; and Chicago, Illinois

Real time 3D is feasible, accurate, and highly reproducible for assessing Mitral valve area .

It has the best agreement with invasive technique.

More accurate than 2D area, PHT, or PISA.

3D ECHO IN HEART VALVE DISEASES The Normal Tricuspid Valve

3D ECHO IN HEART VALVE DISEASES The Concept of Tricuspid Complex

3D ECHO IN HEART VALVE DISEASES Clinical Case #1

74-yr-old woman **Congestive HF Previous DDD-R P.M implant** Symptomatic Sick Sinus **Syndrome**

55 HD

University of Padua

Nucifora G, Badano LP, et al. Echocardiography 2007

3D ECHO IN HEART VALVE DISEASES Clinical Case #1

Nucifora G, Badano LP, et al. Echocardiography 2007

3D ECHO IN HEART VALVE DISEASES Tricuspid Annulus diameters

Badano LP, et al. Eur J Echocardiogr 2009

3D ECHO IN HEART VALVE DISEASES Tricuspid Annulus Geometry

3D ECHO IN HEART VALVE DISEASES Tricuspid Annulus Size

- Automatic Measurements	
AP Diameter:	3.1 cm
AL-PM Diameter:	3.1 cm
Sphericity Index:	1.0
Non-planar Angle:	173.7*
Annulus Circumference:	10.7 cm
Annulus Area (2D) :	8.3 cm²

3D ECHO IN HEART VALVE DISEASES Tricuspid Annulus Geometry

Ton-Nu T et al. Circulation 2006

3D ECHO IN HEART VALVE DISEASES Tricuspid Stenosis

3D ECHO IN HEART VALVE DISEASES 2D/Doppler Quantification of Aortic Stenosis

Assumptions:

- LV Outflow Tract is circular and constant in size throughout cardiac cycle;
- LVOT Doppler tracing recorded at the same place where LVOTD has been measured.

Threat:

- Any 10% error in LVOTD measurement translates in 20% error in Ao EOA

University of Padua

3D ECHO IN HEART VALVE DISEASES Limits of conventional 2D assessment of LVOT Area

3D ECHO IN HEART VALVE DISEASES Limits of conventional 2D assessment of LVOT Area

University of Padua

Ng, A. C.T. et al. Circ Cardiovasc Imaging 2010;3:94-102

3D ECHO IN HEART VALVE DISEASES Aortic Root Dilation: Clinical case

3D ECHO IN HEART VALVE DISEASES Aortic Root Dilation: Clinical case

3D ECHO IN HEART VALVE DISEASES Aortic Valve and Root Modeling

Courtesy of M Vannan

3D ECHO IN HEART VALVE DISEASES Aortic Valve and Root Modeling

Courtesy of Mani Vannan

3D ECHO IN HEART VALVE DISEASES Aortic Root Complex Quantitation

3D ECHO IN HEART VALVE DISEASES Conclusions

•3D echo has overcome the era a pure research tool and it is now ready for routine clinical use;

•3D echo offers a unique opportunity to assess the pathology of heart valve diseases and provides unprecedented quantitative data about their severity

 Communication with cardiac surgeons has greatly improved by using 3D images and surgery can be accurately planned in advance

EUROECHO 2010 EUROPEAN SOCIETY OF CARDIOLOGY®

