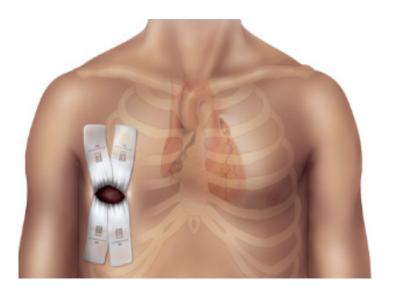


Surgical Mininvasive Approach for Mitral Repair


Prof. Mauro Rinaldi

SC Cardiochirurgia U Universita' degli Studi di Torino

Minimally invasive mitral valve surgery PORT-ACCESS TECNIQUE

- Reduce surgical trauma
- Minimize disruption of the chest wall
- Provide a safe and reproducible approach to CPB and myocardial protection

- Be applicable to the majority of patients and procedures
- Provide same safety and efficacy as conventional cardiac surgery

Minimally Invasive Versus Conventional Open Mitral Valve Surgery

A Meta-Analysis and Systematic Review

MINI vs ST similar mortality rates

30 days 1.2% vs 1.5% - **1** year 0.9% vs 1.3% - **3** years 0.5% vs 0.5% - **9** years 0.2% vs 0.7%

Advantages

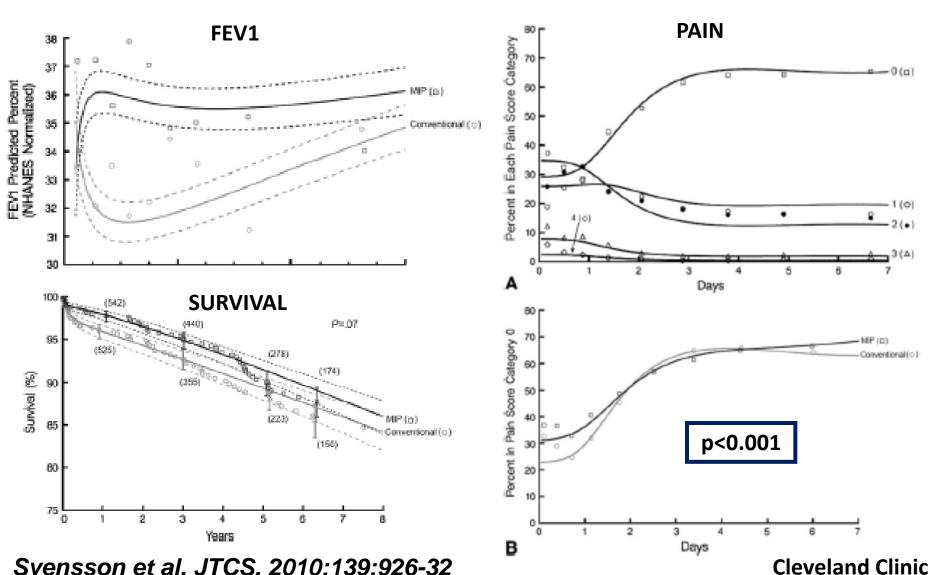
- Decreased bleeding
- Reduced transfusions
- Shorter ICU and hospital stay
- Shorter ventilation time
- Reduced time to return to normal activity
- Reduced surgical pain
- Better cosmesis

Disadvantages

- Increased risk of stroke
- Increased risk of aortic dissection
- Increased ECC and aortic clamp time
- Groin infections/complications

Cheng et al, Innov 2011;6:66-76 – Falk et al, Innov 2011;6:84-103

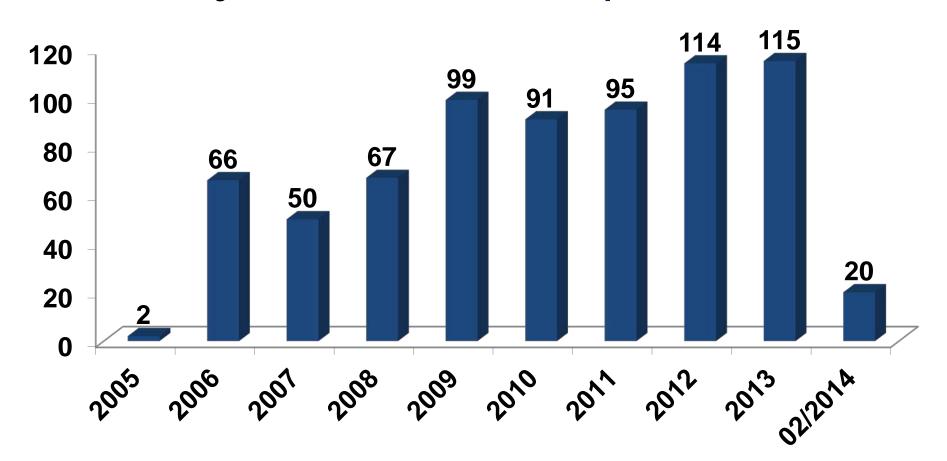
Minimally invasive versus conventional mitral valve surgery: A propensity-matched comparison


Lars G. Svensson, MD, PhD, a Femando A. Atik, MD, Delos M. Cosgrove, MD, Eugene H. Blackstone, MD, beevanantham Rajeswaran, MSc, Gita Krishnaswamy, MS, Ung Jin, MD, A. Marc Gillinov, MD, Brian Griffin, MD, José L. Navia, MD, Tomislav Mihaljevic, MD, and Bruce W. Lytle, MD

- Min Invasive = 2124
- Sternotomy = 1047
- Propensity matched showed no difference in mortality
- MI: less blood, < pain

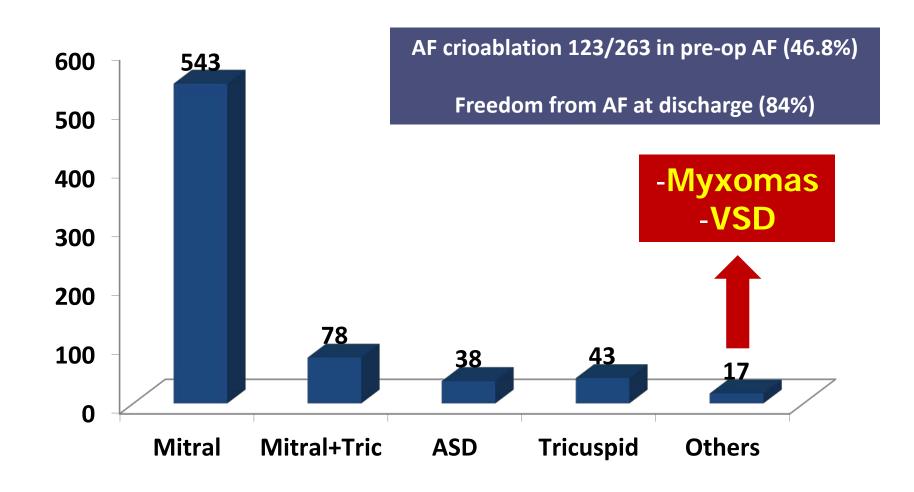
Relatively longer CPB and aortic clamping time

Svensson et al, JTCS. 2010;139:926-32


Turin overall MIS Port Access global experience

2005 – Feb 2014

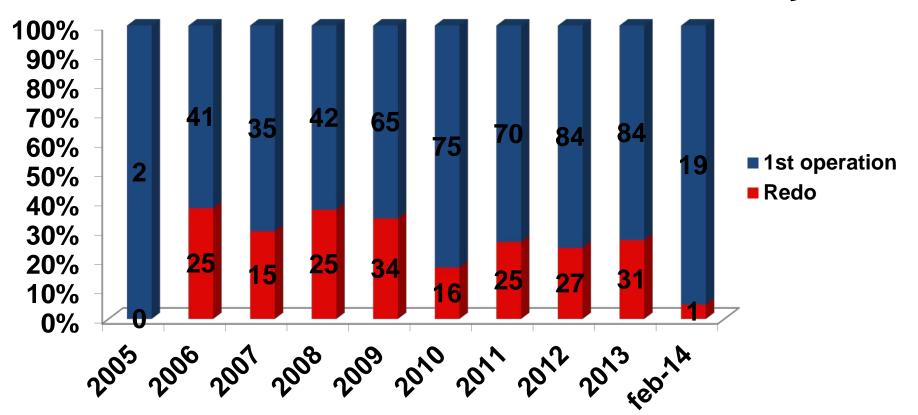
July 2005 - Feb 2014: 719 procedures



Consecutive unselected patients

July 2005 - Feb 2014: 719 procedures

Redo surgery: 199/719 (27.7%)

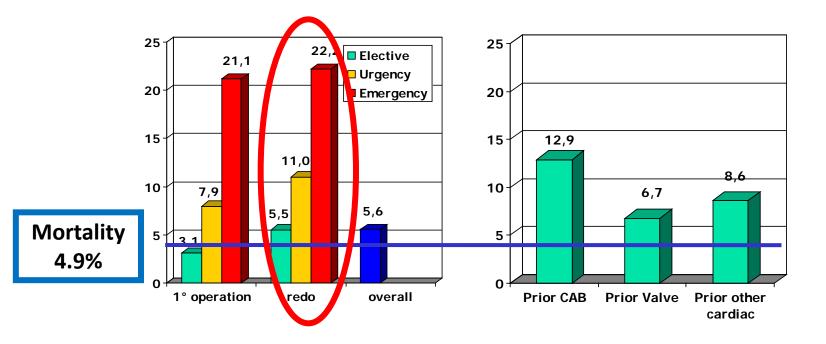

1st redo 125 (63%)

■ 2nd redo 43 (22%)

3rd redo 26 (13%)

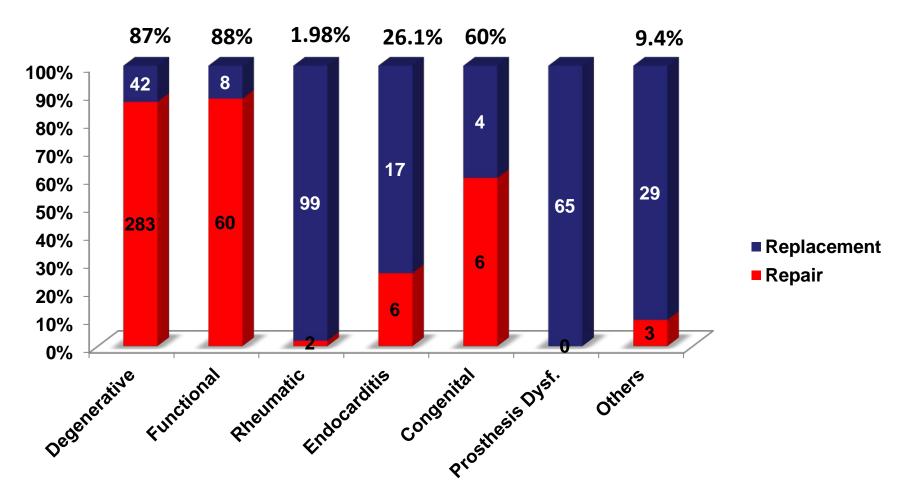
4th redo 5 (2%)

(37.2%)



Port-access surgery as elective approach for mitral valve operation in re-do procedures

Davide Ricci ^{b,*}, Carlo Pellegrini ^a, Marco Aiello ^a, Alessia Alloni ^a, Barbara Cattadori ^a, Andrea M. D'Armini ^a, Mauro Rinaldi ^b, Mario Viganò ^a


^a Division of Cardiac Surgery, Foundation I.R.C.C.S. Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
^b Division of Cardiac Surgery, San Giovanni Battista Hospital "Molinette", University of Torino, 10126 Turin, Italy

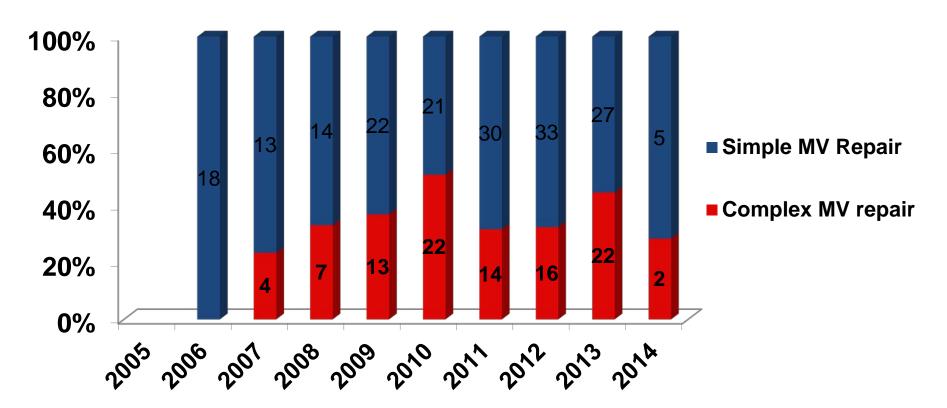
Overall MV surgeries: 624 procedures Repair rate (≅90%)

Overall MV surgeries: 624/707 (88.3%)

	Mean ± SD	Median
ECC (min)	126.5 ± 38.8	119
Aortic clamp (min)	87.2 ± 25.3	84
ICU stay (gg)	2.8 ± 8.4	1
Ventilation (h)	32.2 ± 168.3	9
Reop. for bleeding (%) (n)	4.8%	(30/624)
Drainage blood loss (cc)	495 ± 528	340
Hospital stay (gg)	11.0 ± 13.4	7
Hospital mortality (%) (n)	1.6%	10/624

Operative mortality 0%

Degenerative mitral regurgitation



Overall MV surgeries: 624/707 (88.3%)

Degenerative MV: 325/624 (52.1%)

MV repair rate: 283/311 (91.0%) - MV replacement 42/325 (12.9%)

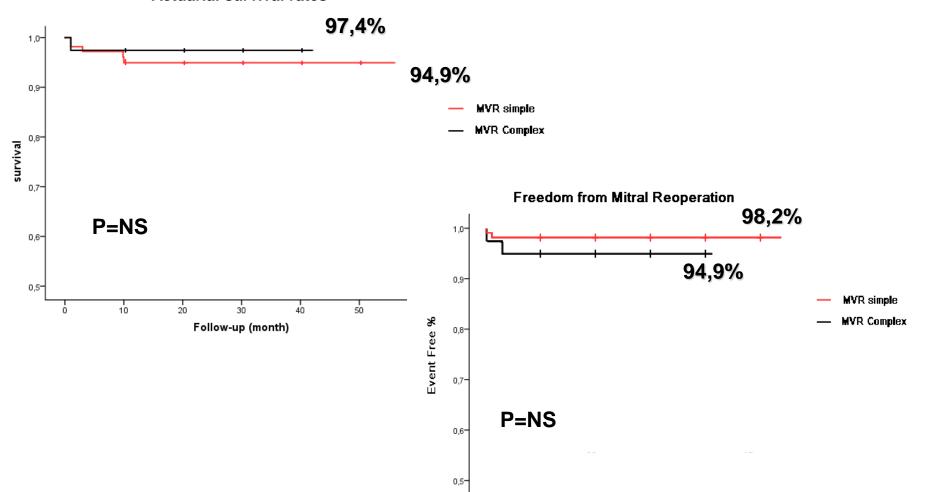
Previous MV repair 14/325

Mitral valve repair techniques

Technique	(n=283)	%
Simple MV repair	183	64.7
Ring annuloplasty	178	97.3
Quadrang/Triang resection ± folding/sliding	129	70.5
Complex MV repair	100	35.3
Ring annuloplasty	96	96
Quadrang/Triang resection ± folding/sliding	61	61
Chordal transposition	32	32
Gore-tex neochordae	73	73
Papillary muscle splitting	3	3
Anterior leaflet triangular resection	1	1
Anterior leaflet patch	3	3
Edge-to-edge	1	1

MV repair - Perioperative and postoperative complication

Type of complication	(n=283)		
Renal insufficiency (n,%)	4	(1.4)	
Neurologic event (n,%)	4	(1.4)	
Reoperation for bleeding (n,%)	2	(0.7)	
MOF (n,%)	1	(0.3)	
Postoperative drainage of			
Rigthpleural effusion (n,%)	3	(1.0)	
30-day mortality (n,%)	3	(1.0)	

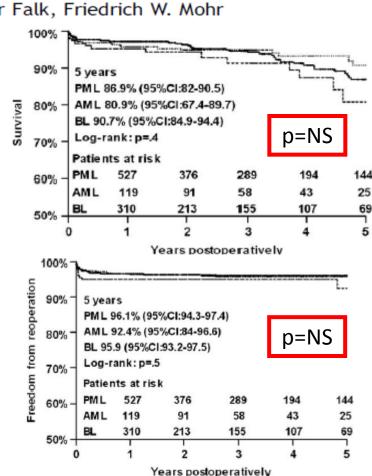


60

50

Follow-up (month)

Actuarial survival rates



Comparison of outcomes of minimally invasive mitral valve surgery for posterior, anterior and bileaflet prolapse*

Joerg Seeburger*, Michael A. Borger, Nicolas Doll, Thomas Walther, Jurgen Passage, Volkmar Falk, Friedrich W. Mohr

- Min Invasive = 1230
- AML or BL = 558
- PML = 672
- No difference in survival or reoperation at 5 years

Functional mitral regurgitation

Mitral valve repair in heart failure

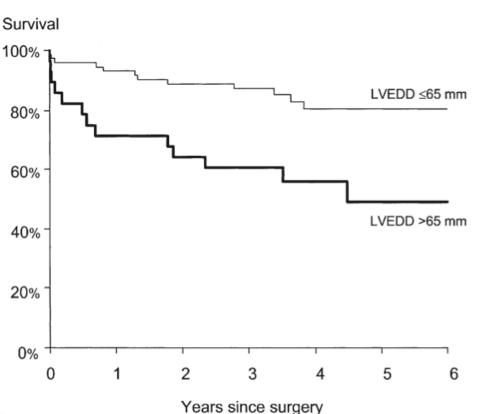
Iva A. Smolens, Francis D. Pagani, Steven F. Bolling*

The University of Michigan, Section of Cardiac Surgery, Taubman Health Care Center, 2120D, Box 0348, 1500 E Medical Center Drive, Ann Arbor, MI 48109-0348, USA

Received 6 September 1999; received in revised form 7 October 1999; accepted 12 September 2000

Mitral valve repair via an 'undersized' annuloplasty repair is safe and effectively corrects MR in heart-failure patients. All of the observed changes contribute to reverse remodeling and restoration of the normal left-ventricular geometric relationship. Mitral valve repair offers a new strategy for patients with MR and end-stage heart failure

	EDV		EF	CO	
	(ml)	D/L	(%)	(L/min)	RF (%)
Preop.	281 ± 86	0.82 ± 0.10	17 ± 3	3.3 ± 0.9	68 ± 14
Postop.	206 ± 88	0.74 ± 0.07	26 ± 8	5.2 ± 1.1	15 ± 14
Change	-75 ± 33	-0.08 ± 0.07	$+9 \pm 5$	1.9 ± 0.9	-53 ± 18
p Value	< 0.001	0.005	0.008	0.001	< 0.001



Restrictive Mitral Annuloplasty Cures Ischemic Mitral Regurgitation and Heart Failure

Jerry Braun, MD, Nico R. van de Veire, MD, Robert J. M. Klautz, MD, PhD, Michel I. M. Versteegh, MD, Eduard R. Holman, MD, PhD, Jos J. M. Westenberg, PhD, Eric Boersma, PhD, Ernst E. van der Wall, MD, PhD, Jeroen J. Bax, MD, PhD, and Robert A. E. Dion, MD, PhD

Departments of Cardiothoracic Surgery, Cardiology, and Radiology, Leids Universitair Medisch Centrum, Leiden, and Department of Cardiology, Erasmus Medisch Centrum, Rotterdam, the Netherlands

Conclusions. At 4.3 years' follow-up, intermediate-term cutoff values for left ventricular reverse remodeling proved to be predictors for late mortality. For patients with preoperative LVEDD of 65 mm or less, restrictive mitral annuloplasty with revascularization provides a cure for ischemic mitral regurgitation and heart failure; however, when LVEDD exceeds 65 mm, outcome is poor and a ventricular approach should be considered.

Mitral valve surgery in heart failure: Insights from the Acorn Clinical Trial

Michael A. Acker, MD,^a Steven Bolling, MD,^b Richard Shemin, MD,^c James Kirklin, MD,^d Jae K. Oh, MD,^e Douglas L. Mann, MD,^f Mariell Jessup, MD,^g Hani N. Sabbah, PhD,^h Randall C. Starling, MD,ⁱ and Spencer H. Kubo, MD,^j for the Acorn Trial Principal Investigators and Study Coordinators

Recurrent MR after MV surgery

		seline atients)		mo patients)		? mo patients)		B mo eatients)
MR severity	No.	%	No.	%	No.	%	No.	%
0	14	7.4	94	61.0	81	55.9	56	58.9
1+	20	10.6	34	22.1	40	27.6	28	29.5
2+	44	23.3	13	<u>8.</u> 4	16	11.0	7	<u>7.</u> 4
3+	49	25.9	10	6.5	6	4.1	2	2.1
4+	62	32.8	3	1.9	2	1.4	2	2.1
Mean score	2	.66	0	.67	0	.67	().59
P vs baseline	-	_	<	.0001	<	.0001	<	c.0001

MR, Mitral regurgitation.

The NEW ENGLAND JOURNAL of MEDICINE

2014;370(1):23-32

ORIGINAL ARTICLE

Mitral-Valve Repair versus Replacement for Severe Ischemic Mitral Regurgitation

<u>Multicenter</u> (Cardiothoracic Surgical Trials Network – CTSN) <u>randomized trial</u> to evaluate the relative risks of repair vs replacement with or without CABg in patients with severe FMR

Primary end point

- Degree of LV reverse remodelling by means of LVESVI (at 12 months after surgery)

Secondary end points

- Mortality, composite of major adverse events (death,stroke,hospit for heart failure), recurrency of MR, QoL, and rehospitalization

Mitral valve pathology in severely impaired left ventricles can be successfully managed using a right-sided minimally invasive surgical approach[†]

Jens Garbade*, Joerg Seeburger, Denis R. Merk, Bettina Pfannmüller, Marcel Vollroth, Markus J. Barten, Michael A. Borger and Friedrich-Wilhelm Mohr

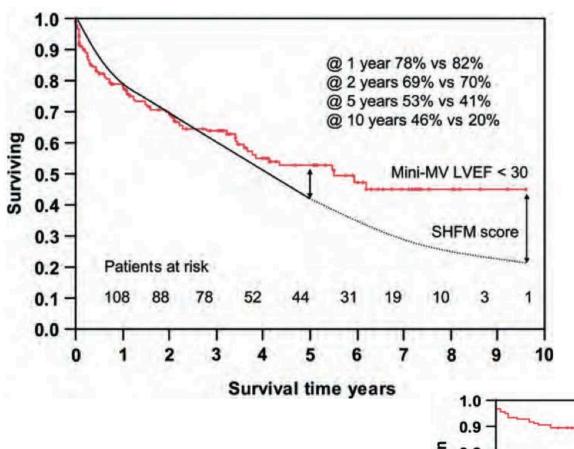
Department of Cardiac Surgery, Heart Center, University of Leipzig, Leipzig, Germany

Garbade et al EJTCV 2013;1:1-7

Table 1: Baseline clinical characteristics in patients undergoing Mini-MV with an LVEF < 30%

Variable	Mini-MV n = 177 patients
Study period	1999-2010
Demographics	
Age (years)	67 ± 11
Sex (male)	110 (63%)
Weight (kg)	75.3 ± 13.3
BMI	25.8 ± 3.6
LVEF (%)	23.9 ± 5.8
LVEDD (mm)	69 ± 11
NYHA class	3.1 ± 0.8
Comorbidities	
Previous cardiac surgery	32 (18.3%)
Primary ICM	22 (12.4%)
Primary DCM	155 (87.6%)
COPD	9 (5.4%)
Renal insufficiency	45 (25%)
Stroke	2 (1.1%)
Hypertention	35 (19.8%)
Diabetes	51 (28.8%)
EuroSCORE (%)	14.7 ± 13.6
Indication for surgery	
MV insufficiency	172 (97.2%)
MV stenosis/insufficiency	5 (2.8%)
Concomitant indications	
TV insufficiency	27 (15.4%)
Atrial fibrillation	61 (34.5%)
ASD/PFO	10 (5.6%)

Mini-MV surgery in patients with significantly impaired left ventricular function can be performed with a reasonable operative mortality and acceptable long-term survival for this high-risk patient cohort


Table 3: MV-related operative data of 177 patients undergoing Mini-MV with an LVEF < 30%

Variable	Mini-MV
	n = 177 patients
MV procedure	
MV repair	153 (86.4%)
MV replacement	24 (13.6%); mean size 28.9 ± 1.4
Conversion repair-	6 (3.4%)
replacement	
Annuloplasty ring	146; mean size 29.5 ± 2.3
Physio ^a	107; mean size 29.2 ± 2.0
IMR ETLogix ^a	26; mean size 30.4 ± 2.2
Other	Cosgrove ^a $n = 7$; Micardia ^b $n = 1$; Classic ^a $n = 1$; Saddle ^c $n = 4$
Chordae replacement	AML 5 patients; PML 3 patients
Leaflet resection	AML 2 patients (sliding plasty 1); PML 5

Edge-to-edge/Alfieri

Replacement if:

LVEDD > 65 mm Tethering > 11 mm

0.9 - 0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 0.2 - 0.4 - 0.1 - 0.0 - 0.0 -

Years till reoperation

Garbade et al EJTCV 2013;1:1-7

Functional Mitral Regurgitation

(2006 - Feb 2014)

• 624 pts ——— 68/624 (10.1%) FMR

22 (F) - 38 (M), Mean Age 68 ± 13 years

Redos: 31/68 (45.6%)

•1st redo 27 (87.1%)

•2nd redo 3 (9.6%)

•3rd redo 1 (3.3%)

24/27 (88.9%) previous CABG

MV Replacement: 8/68 cases (12%)

MV Repair: 60/68 cases (88%)

Subgroup division according to:

• **EF** $\leq 40\%$ (33 pts) vs > 40% (27 pts)

•**LVEDD** < 65 mm (40 pts) $vs \ge 65$ mm (20 pts)

• Etiology ICM (42 pts) vs DCM (18 pts)

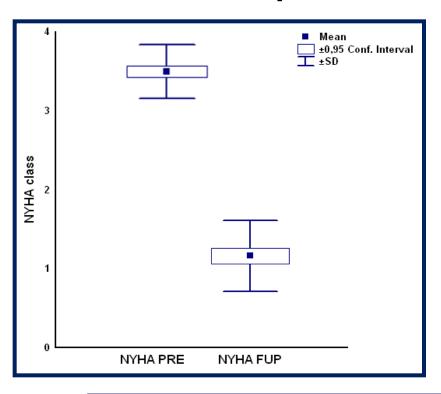
Periop. variables & complications

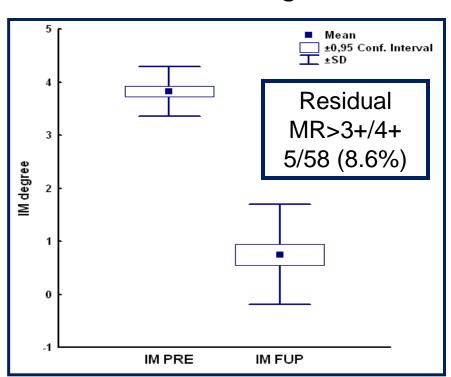
Variables	FMR (60pts)
Ventilation (hs) (median)	27.6 ± 45.2 (10)
ICU stay (ds) (median)	$2.8 \pm 3.9 (1)$
Hospital stay (ds) (median)	16.0 ± 27.0 (8)
Blood loss (cc)	450.2 ± 277.3
Re-operation for bleeding	3 (5.0%)
Acute renal failure (CVVH)	5 (8.3%)
Low cardiac output syndrome - IABP	4 (6.7%)
Neurological complication	2 (3.3%)
Intraoperative repair failure	0
Postoperative repair failure	0
30-day mortality	2 (3.3%)

Since the last 2 years 0% neurologic events

No differences between the subgroups

30 day mortality: 3.3%

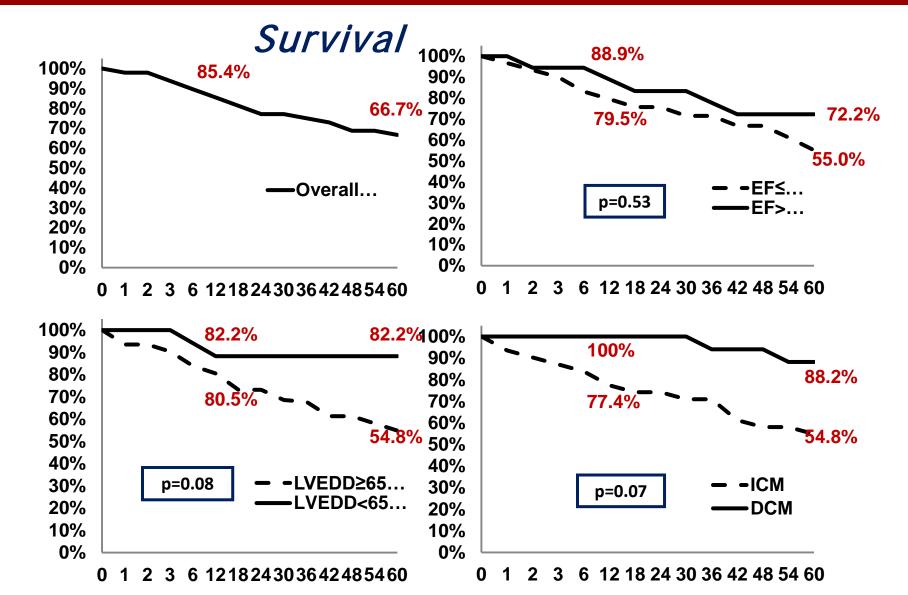




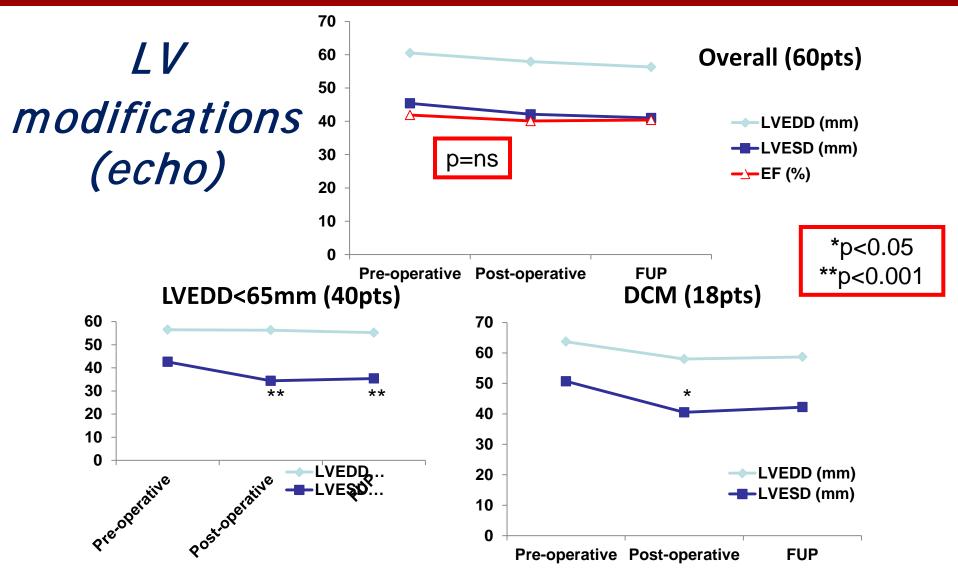
FOIIOW-UP (100% completed)

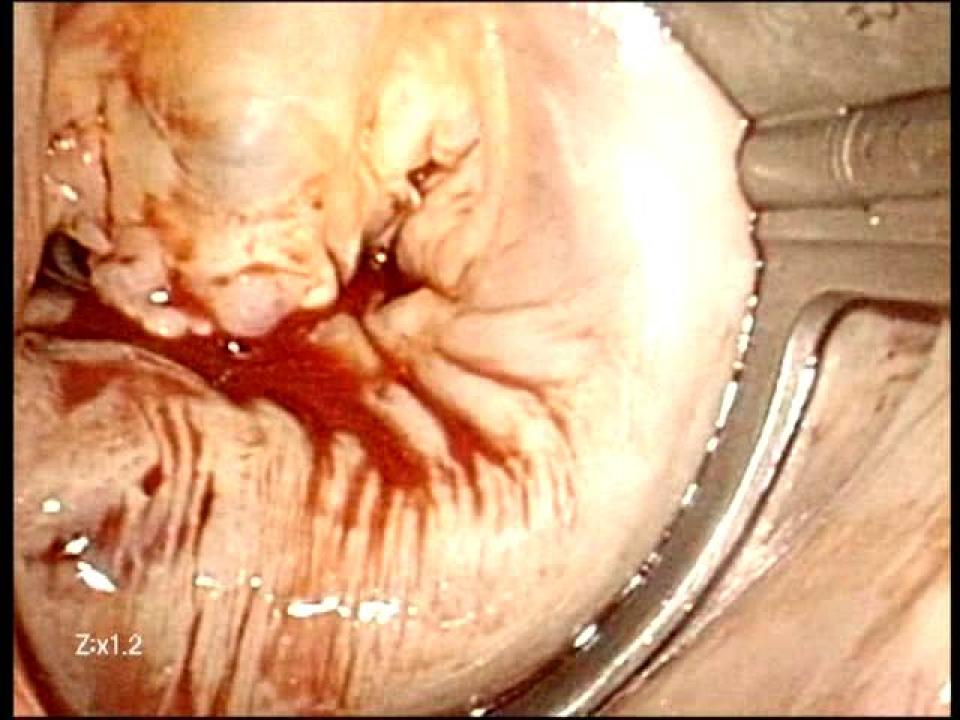
58/60 pts (2 pts died within 30 days)

Mean follow-up time: 28 \pm 24 months (range 1 – 87)



0% freedom from reoperation (at 1 and 5 years)







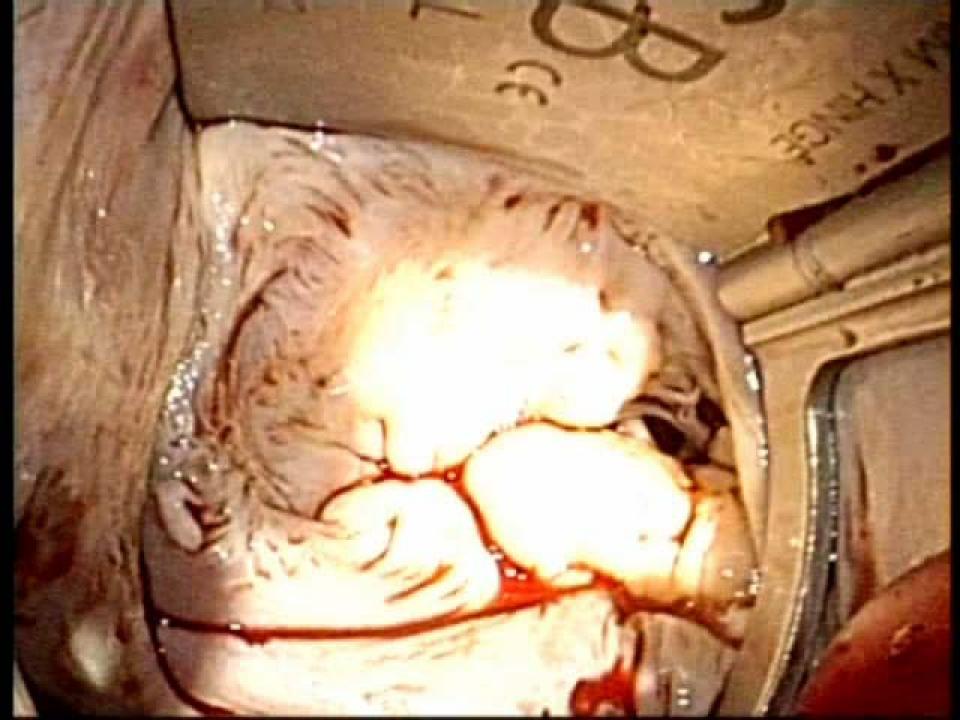
Barlow

Chordal transposition

PHILIPS

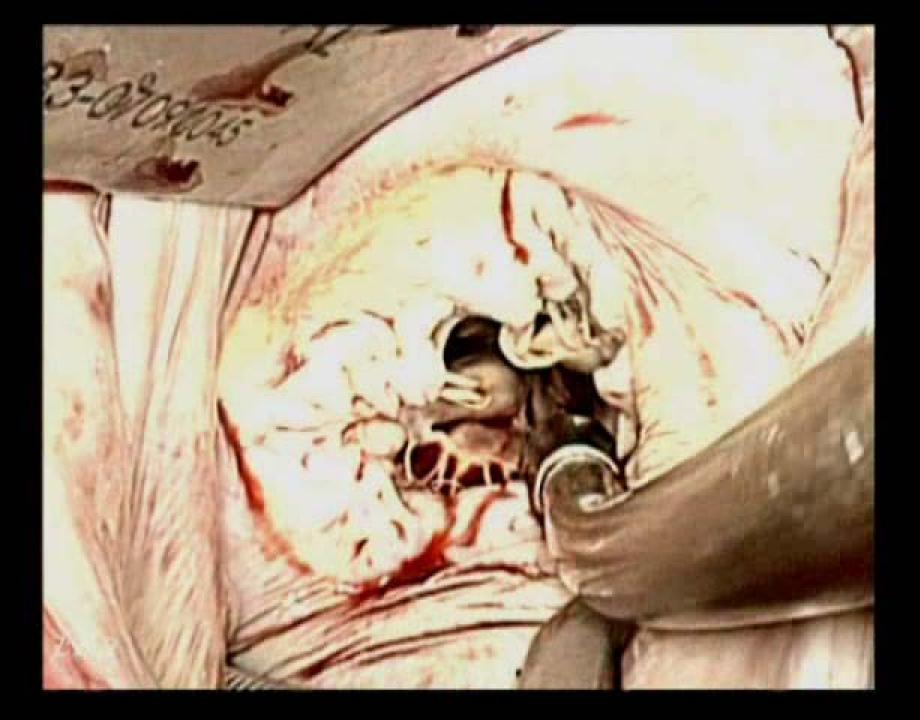
16/09/2010 16:23:59 TISO.1 MI 0.5

CX7-2t/Adulti


M4

FR 52Hz 7.0cm

Temp. PAZ:: 37.0C Temp. TEE: 38.5C 285 bpm



SAM

TIS1.1 MI 0.7 25/05/2010 10:30:49 PHILIPS T6H/Adulti FR 17Hz 8.1cm M3 M4 +61.6 2D 65% C 50 P Off Gen 100 CF 70% 4.9MHz WF Alto Med. -61.6 cm/s

JPEG

CONCLUSIONS

- ✓ Same or even better safety and efficacy respect to standard technique
- ✓ Reduction of surgical dissection → low blood loss
- ✓ Reduction of postoperative pain
- ✓ Improvement of postoperative respiratory function
- ✓ Early mobilization & shorter hospital stay
- ✓ Faster recovery to functional activity
- ✓ Less rehabilitation resources
- ✓ Cosmetically superior incision
- ✓ Facilitation for reoperation at a later date
- ✓ Reduction of costs

CONCLUSIONS

- ✓ Need for learning curve with consulting and proctoring;
- ✓ Need for Heart team with daily collaboration between Cardiac Surgeons Cardiologists Anesthesiologists Perfusionists and Nurses;
- ✓ Need for appropriate patient/technique selection;
- ✓ The further development of surgical and percutaneous treatment of the mitral valve must be done by means of close collaboration between cardiologists and cardiac surgeons in high volume surgery centers experienced in MIMVS

"We must tailor the operation to the patient and not the patient to the operation"

Denton A. Cooley