ADVANCES IN CARDIAC ARRHYTHMIAS and

GREAT INNOVATIONS IN CARDIOLOGY

XXVI Giornate Cardiologiche Torinesi

UNIVERSITÀ DEGLI STUDI DI TORINO

Building the core of a successful VT ablation: the importance of substrate location

Giuseppe Maccabelli, MD Arrhythmia Department and Clinical Electrophysiology Laboratories Ospedale San Raffaele, IRCCS, Milan, Italy

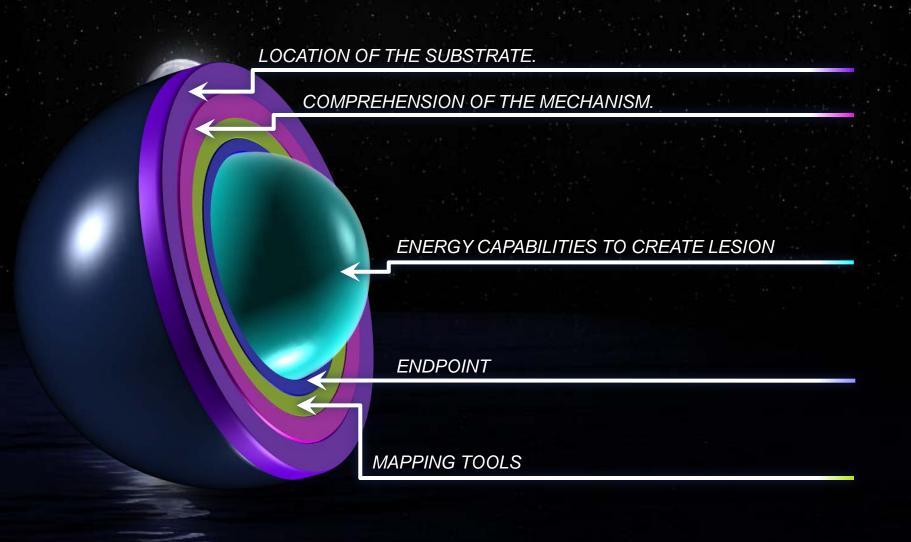
LOCATION OF THE SUBSTRATE.

LOCATION OF THE SUBSTRATE.

COMPREHENSION OF THE MECHANISM

LOCATION OF THE SUBSTRATE.

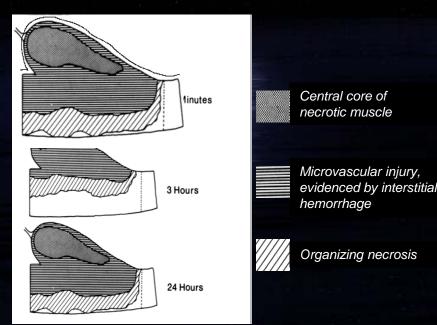
COMPREHENSION OF THE MECHANISM


MAPPING TOOLS

LOCATION OF THE SUBSTRATE.

COMPREHENSION OF THE MECHANISM

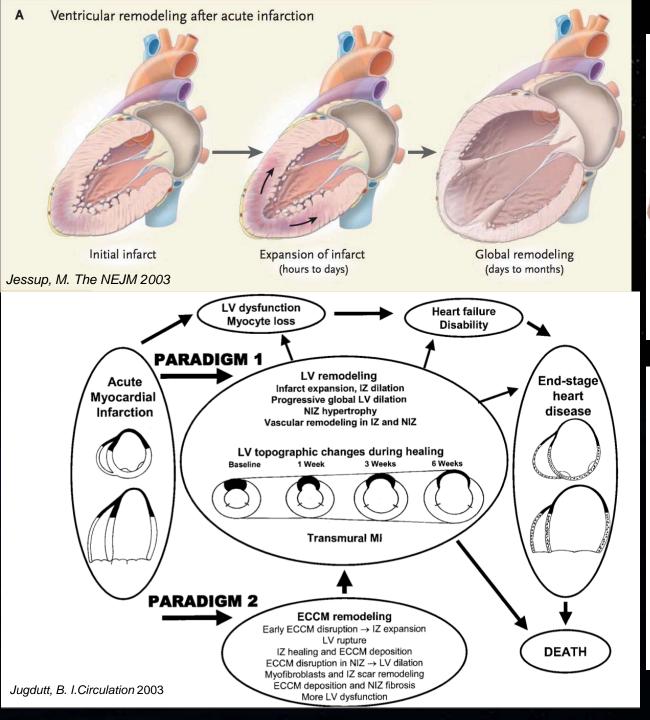
ENDPOINT


MAPPING TOOLS

ISCHEMIC CARDIOMYOPATHY - prerecanalization era

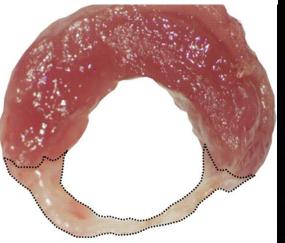
The concept of "wavefront phenomenon" of myocardial death

Myocardial necrosis progresses with the duration of coronary occlusion, extending from the subendocardium towards the subepicardium, as to involve the full thickness ventricular wall. Coronary occlusion leads to transmural AMI when exceeding 6 h.

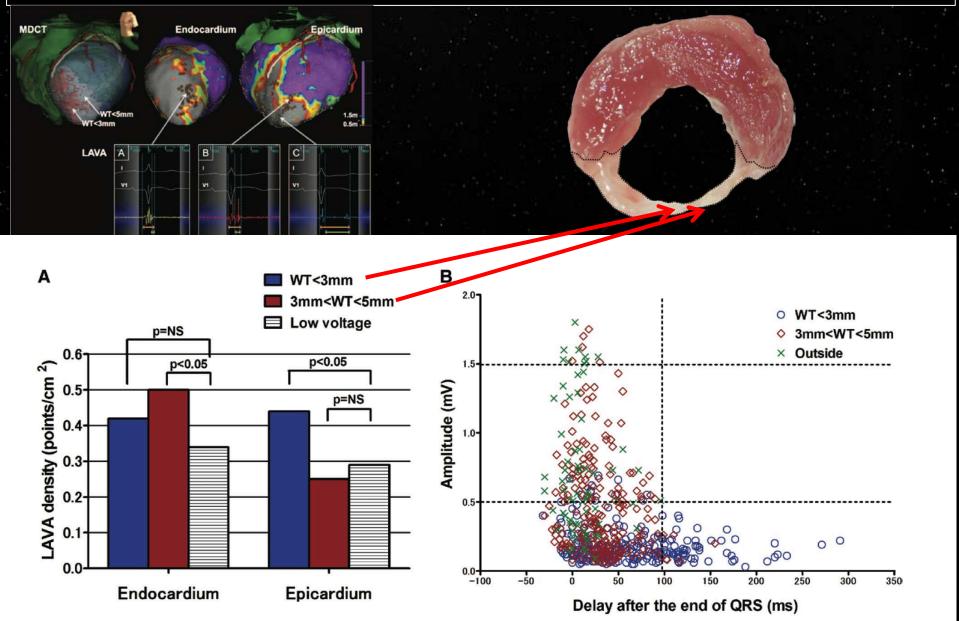


DIFFERENT SCENARIOS

1 WITHOUT RECANALIZATION


2 WITH RECANALIZATION

KA Reimer, JE Lowe, MM Rasmussen and RB Jennings Circulation 1977, 56:786-794



1 DAY

1 MONTH

Komatsu, Y.,. Regional Myocardial Wall Thinning at Multidetector Computed Tomography Correlates to Arrhythmogenic Substrate in Postinfarction Ventricular Tachycardia: Assessment of Structural and Electrical Substrate. Circulation: Arrhythmia and Electrophysiology 2013

 \mathbf{F} in the probability of the second degree of the second degree \mathbf{F} is the probability of the probab

ISCHEMIC CARDIOMYOPATHY - in the reperfusion era

MVO (% LV):

4.8

MVO (% LV):

0.5

	1	₽ŝ	REPE	RFUSION			NO	REPERFUS	ION
PPCI		Lysis		Rescue P	CI	Late PC	1	Non-Reperfe	used
C)	(×			A A A A A A A A A A A A A A A A A A A	
- A		R			chit	X		T	M/
TTR (mins): LVEDVI (ml/m²): LVEF (%): IS (%LV):	120 96.0 48.1 11.5	TTR (mins): LVEDVI (ml/m²): LVEF (%): IS (%LV):	300 110.8 43.8 13.9	TTR (mins): LVEDVI (ml/m²): LVEF (%): IS (%LV):	413 77.7 32.7 24.1	TTR (mins): LVEDVI (ml/m²): LVEF (%): IS (%LV):	1300 127.2 33.5 44.0	TTR (mins): LVEDVI (ml/m²): LVEF (%): IS (%LV):	n/a 96.0 30.7 25.7

Figure 3 Representative images of LGE CMR and coronary anatomy at the start of angiography in the cohorts. Top row: CMR late gadolinium images from a patient within each of the 5 study cohorts, demonstrating infarct (enhancement); microvascular obstruction (arrow) evident as hypointense areas within infarct. Middle row: coronary angiography images at the start of angiography in the same patients demonstrating infarct related artery; white star denotes culprit lesion (right coronary artery in PPCI and lysis patient, left circumflex in rescue-PCI patient, left anterior descending artery in late PCI and non-reperfused patient). Bottom row: Time from symptoms to revascularisation (TTR) and CMR data for the same patients.

MVO (% LV):

5.2

MVO (% LV):

ANO MJ Cowan HUM PATHOL 22:154-163. Copyright C 1991

13.6

MVO (% LV):

21

ISCHEMIC CARDIOMYOPATHY

Sosa E, Nonsurgical trans-thoracic epicardial catheter ablation to treat recurrent ventricular tachycardia occurring late after myocardial infarction. J Am Coll Cardiol 2000;35:1442–1449. 39% of all mappable VTs late after inferior MI were terminated by epicardial ablation.

Sacher F. Epicardial ventricular tachycardia ablation: a multicenter safety study. J Am CollCardiol 2010;55:2366–2372.

16% of patients with ischemic cardiomyopathy required epicardial mapping and/or ablation.

Nakahara S. Distribution of late potentials within infarct scars assessed by ultra high-density mapping. Heart Rhythm 2010;7: 1817–1824

4 of 14 patients (29%) with PI-MI and 0 of 7 patients (0%) with A-MI required epicardial ablation following endocardial and epicardial high-density mapping

Yoshiga, Y. Correlation between substrate location and ablation strategy in patients with ventricular tachycardia late after myocardial infarction. Heart rhythm : the official journal of the Heart Rhythm Society, 9(8), 1192–1199. 2012

6 of 40 patients (15%) with PI-MI and none of the patients with A-MI required epicardial access after initial endocardial ablation

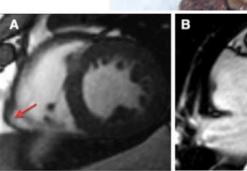
Silberbauer, J. Noninducibility and Late Potential Abolition: A Novel Combined Prognostic Procedural End Point for Catheter Ablation of Postinfarction Ventricular Tachycardia. Circulation: Arrhythmia and Electrophysiology, 7(3), 424–435.

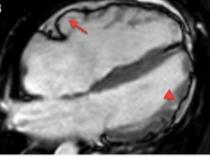
a combined endo-epicardial approach was used in 32 pts (21%) procedures.

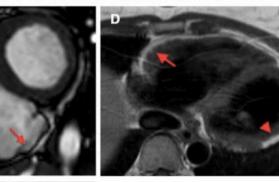
ISCHEMIC CARDIOMYOPATHY

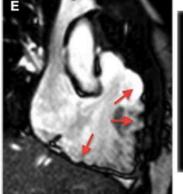
ENDOCARDIAL ABLATION – THE GOLDEN ROLE IN ICM

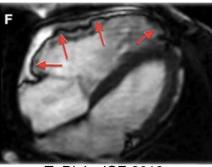
Gao, P., Yee. Prediction of Arrhythmic Events in Ischemic and Dilated Cardiomyopathy Patients Referred for Implantable Cardiac Defibrillator: Evaluation of Multiple Scar Quantification Measures for Late Gadolinium Enhancement Magnetic Resonance Imaging. Circulation Cardiovascular Imaging, 2012


Table 2. Baseline Magnetic Resonance Imaging Characteristics of Study Population in Those With and Without the Primary Outcome Stratified According to Cardiomyopathy Etiology


	Total P	opulation (N=124	4)		ICM (N=59)		I	DCM (N=65)	
Variable	P0- (N=106)	PO+ (N=18)	<i>P</i> Value	PO- (N=49)	P0+ (N=10)	P Value	P0- (N=57)	P0+ (N=8)	<i>P</i> Value
Non-HE variables									
LVEF (%)	26±7	25±7	0.471	27±8	23±8	0.072	26±7	28±7	0.350
LV EDV (mL)	251±68	261±73	0.557	244±65	283±66	0.087	257±71	234±76	0.394
LV ESV (mL)	186±61	195±56	0.554	180±61	216±32	0.075	192±62	170±69	0.356


COMPULSORY EPICARDIAL ABLATION ENDOCARDIAL THROMBUS OR CALCIFICATION


Sub-epicardial HE	14 (13%)	4 (22%)	0.319	1 (2%)	0 (0%)	0.655	13 (23%)	4 (50%)	0.104
HE, total HE (g)									
STRM									
≥2SD	32±19	59±30	0.001	42±19	69±17	0.001	23±15	46±38	0.003
≥3SD	22±18	48±31	0.001	33±18	59±19	0.001	13±12	34±38	0.001
≥5SD	13±15	35±29	0.001	23±15	44±22	0.001	5±7	23±34	0.001
FWHM									
>50%				25±14	37±10	0.01			
HE, peri-infarct (g)									
STRM									
2–3 SD				9±5	11±6	0.270			
2–5 SD				19±10	25±11	0.107			
FWHM									
35%-50%				17±11	25±16	0.075			


MILANO



TeRiele:JCE,2013

The most striking morphological feature of the disease is the diffuse or segmental loss of RV myocytes, with replacement by fibrofatty tissue and thinning of the RV wall.

Patchy inflammatory infiltrates can be present in areas of myocardial damage.

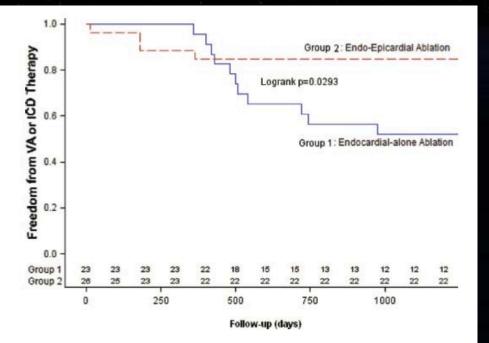
Fibrofatty replacement usually begins in the subepicardium or midmural layers and progresses to the subendocardium. Only the endocardium and myocardium of the trabeculae may be spared.

The sites of involvement can be localized and in early disease may show a characteristic pattern involving the basal inferior and anterior RV, (and the posterolateral LV). The RV apex is only involved in advanced ARVD/C, typically as a part of global RV involvement.

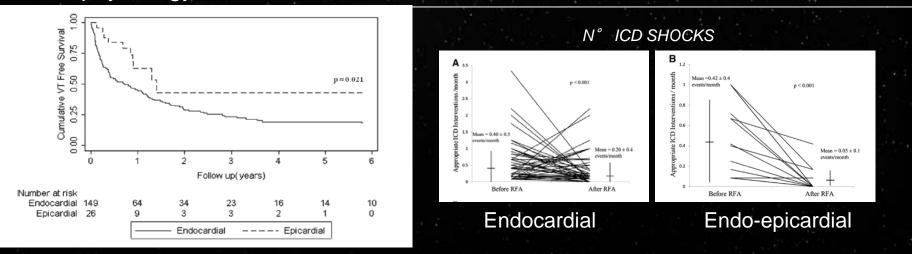
RV aneurysms, and segmental RV hypokinesia are typical. Diffuse myocardial involvement leads to global RV dilation. However, the fibrofatty pattern of ARVD is limited not only to the RV; the disease also can migrate to the LV,with a predilection for the **posteroseptal and posterolateral areas**, with relative sparing of the septum

San Raffaele Hospital - Milan

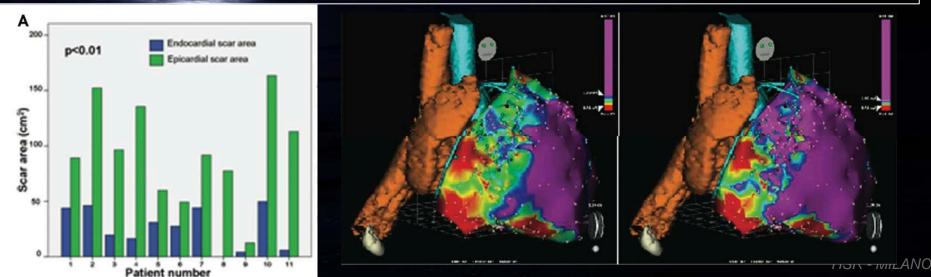
Epicardial Substrate and Outcome With Epicardial Ablation of Ventricular Tachycardia in Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia GARCIA . CIRCULATION 2009


	Sinus Rhythr	n RV Points	Abnormal Bipo Area,		Er	ndocardial-Epicardial	Distance, mm
Patient	Endocardial	Epicardial	Endocardial	Epicardial	Basal RV	Mid Free Wall RV	Opposing RF Lesion
1	154	332	43.4	72.1		7	7
2	267	260	53.8	141.7	15	8	9
3	183	195	40.2	78.4	7	8	7
4	297	260	31.3	82.8	7	8	7
5	318	316	136.3	187.7	11	8	6
6	326	431	34.4	178.6	12	7	11
7	458	415	34.8	51.6	23	7	12
8	355	443	17.0	90.8	15	7	13
9	590	527	43.5	67.5	20	8	16
10	386	695	12.2	106	6	7	
11	185	311	13.2	28.3	9	5	4
12	552	356	26.4	73.7	7	5	
12	319	605	6.1	77.8	5	5	6
Mean±SD	337±134	396±145	37.8±32.8	95.2±47.1	11.1±5.6	6.9±1.2	8.9±3.6

Epicardial VTs were targeted opposite normal endocardium in 10 patients (77%) and/or opposite ineffective endocardial ablation sites in 11 patients (85%). During 18 ± 13 months, 77% of patients had no VT, with 2 patients having only a single VT at 2 and 38 months, respectively.


Ablation of Ventricular Arrhythmias in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Arrhythmia-Free Survival After Endo-Epicardial Substrate Based Mapping and Ablation Bai. *Circ Arrhythm Electrophysiol.* 2011;4:478-485.

Forty-nine patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy


Follow-up: 3 years	Group 1	Group 2	
Freedom from VAs or ICD therapy	52.2% (12/23)	84.6% (22/26)	P=0.029
Off antiarrhythmic drugs	with 21.7% (5/23	69.2% (18/26)	P=0.001

Philips, B. Outcomes of Catheter Ablation of Ventricular Tachycardia in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Circulation: Arrhythmia and Electrophysiology, 2012

Berruezo, A. Combined Endocardial and Epicardial Catheter Ablation in Arrhythmogenic Right Ventricular Dysplasia Incorporating Scar Dechanneling Technique. Circulation: Arrhythmia and Electrophysiology, 2012

V.V. 44 y, female, initial ARVD dilated cardiomyopathy with mild LV dysfunction

9/2011 marked weakness during aerobic exercise -> syncope -> the ECG shows VT (strip not available) -> treated with DC shock Coronary angiography: normal EPS: inducibility of VT -> Endocardial ablation (RV) -> partial success Discharged: Metoprolol

10/2011 2 spontaneous VT episode

REFERRED TO OUR CENTER

ENDOCARDIAL RV

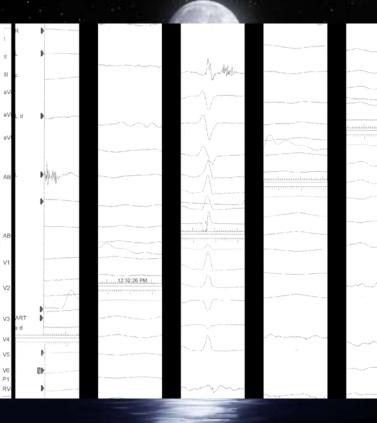
EPICARDIAL RV

1.41

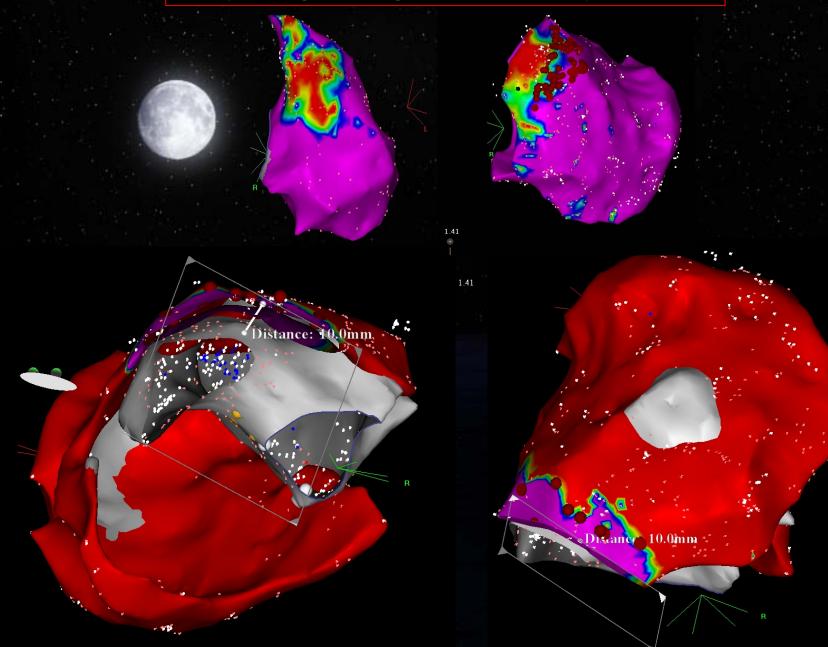
BIPOLAR

1.41

1.41 1.41


BIPOLAR

LATE POTENTIALS


•_•

BEFORE RF

REMAP AFTER RF

· MILANO

Cardiomyopathies are traditionally defined on the basis of structural and functional phenotypes, notably dilated, hypertrophic, and restrictive.

THE DILATED CARDIOMYOPATHY PHENOTYPE

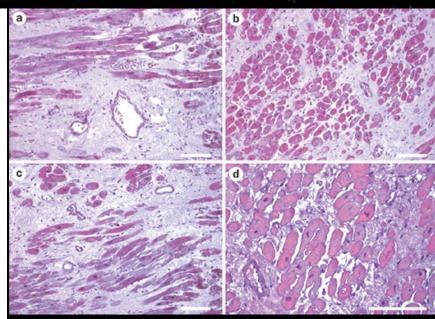
is the most common and is often viewed as a "final common pathway" of numerous types of cardiac injuries

					Table 1. Known Causes of Dilated Cardiomyopathy.
нсм	DCM	ARVC	RCM	Unclassified	- Toxins Ethanol*
Familial Familial, unknown gene Sarcomeric protein mutations B myosin heavy chain Cardiac myosin binding protein C Cardiac troponin I Troponin-T a-tropomyosin light chain Regulatory myosin light chain Cardiac actin a-myosin heavy chain Titin Troponin C Muscle LIM protein Glycogen storage disease (e.g. Pomp Forbes', Danon) Lysosomal storage disease (e.g. Anderson-Fabry, Hurler's) Disorders of fatty acid metabolism	Muscle LIM protein TCAP Cytoskeletal genes Dystrophin Desmin Metavinculin Sarcoglycan complex CRYAB Epicardin Nuclear membrane	Familial, unknown gene Intercalated disc protein mutations Plakoglobin Desmoplakin Plakophilin 2 Desmoglein 2 Desmoglein 2 Cardiac ryanodine receptor (RyR2) Transforming growth factor-β3 (TGFβ3)	Familial, unknown gene Sarcomeric protein mutations Troponin I (RCM + /- HCM) Essential light chain of myosin Familial anyloidosis Transthyretin (RCM + neuropathy) Apolipoprotein (RCM + nephropathy) Desminopathy Pseuxanthoma elasticum Haemochromatosis Anderson-Tabry disease Glycogen storage disease	Left ventricular non-compaction Barth syndrome Lamin A/C ZASP α-dystrobrevin	Chemotherapeutic agents (doxorubicin, bleomycin) Cobalt* Antiretroviral agents (zidovudine,* didanosine,* zalcitabine*) Phenothiazines* Carbon monoxide* Lead* Cocaine* Mercury* Metabolic abnormalities Nutritional deficiencies (thiamine,* selenium,* carnitine*) Endocrinologic disorders (hypothyroidism,* acromegaly,* thy- rotoxicosis,* Cushing's disease, pheochromocytoma,* diabetes mellitus) Electrolyte disturbances (hypocalcemia,* hypophosphatemia*)
Carritine deficiency Phosphorylase B kinase deficiency Mitochondrial cytopathies Syndromic HCM Noonan's syndrome LEOPARD syndrome Friedreich's ataxia Beckwith–Wiedermann syndrom Swyer's syndrome Other Phospholamban promoter Familial amyloid Non-familial Non-familial Non-familial (AL/prealbumin)	Mitochondrial cytopathy	Inflammation?	Amyloid (AL/prealbumin) Scleroderma Endomyocardial fibrosis Hypereosinophilic syndrome Idiopathic Chromosomal cause Drugs (serotonin, methysergide, ergotamine, mercurial agents, busulfan) Carcinoid heart disease Metastatic cancers Radiation Drugs (anthracyclines)	Tako Tsubo cardiomyopathy	Inflammatory or infectious causes Infectious Viral (coxsackie virus, cytomegalovirus,* human immunode- ficiency virus) Rickettsial Bacterial (diphtheria*) Mycobacterial Fungal Parasitic (toxoplasmosis,* trichinosis, Chagas' disease) Noninfectious Collagen vascular disorders (scleroderma, lupus ery- thematosus, dermatomyositis) Hypersensitivity myocarditis* Sarcoidosis* Peripartum dysfunction* Neuromuscular causes Duchenne's muscular dystrophy Fracioscapulohumeral muscular dystrophy Erb's limb-girdle dystrophy Friedreich's ataxia

*Potentially reversible, either spontaneously or with treatment, according to case reports.

ARRHYTHMOGENESIS IN IDCM

Myocardial fibrosis, myocyte disarray, and membrane abnormalities
 Autopsy studies have shown substantial left ventricular subendocardial scarring in 33% of patients and patchy areas of replacement fibrosis in 57%, accompanied by increased perivascular fibrous tissue and perimyocytic fibrosis in the left ventricle
 Slow conduction through muscle bundles separated by interstitial fibrosis can cause a zigzag path and promote reentry


Epidemiology of dilated cardiomyopathy

A prospective post-mortem study of 5252 necropsies

S. Rakar, G. Sinagra, A. Di Lenarda, A. Poletti, R. Bussani*, F. Silvestri*, F. Camerini and the Heart Muscle Disease Study Group

Table 2 Dilated cardiomyopathy: microscopic findings

Tuble 2	Diarca	curatomyoput	iy: microse	opic Jinuing					
Patients	Fibrosis (0–3; f/p)	Hypertrophy (0-3)	Thinned myocytes (f/w)	Interstitial oedema (0-3)	Fatty infiltration (0–3; f/w)	Inflammatory infiltrates (+/-)	Arteriolar involvement (0-3)	Myofibre disarray (+/-)	Endocardial thickening (0-3)
1	3/f	2	w	2	1/f	_	1	+	1
2	3/p	1	w	2	1/f	-	0		2
3	1/p	1	w	2	1/f	-	0	-	0
4	1/p	1	f	1	2/f	-	1	-	0
5	1/f	1	w	1	3/f	-	0	+	1
6	2/p	2	f	2	2/f	-	0	+	0
7	1/p	1	w	1	1/f	-	1	-	0
8	2/f	1	w	1	1/f	-	0	-	2
9	2/f	2	ſ	1	2/f	_	1	-	0
10	2/f	1	w	2	2/f	+	0	-	1
11	1/f	2	w	1	0	-	0	-	2
12	1/p	1	ſ	1	2/f	+	0	-	2
13	2/f	1	w	1	0	+	0	-	2
14	1/p	1	w	1	0	+	0	-	2
15	1/f	1	w	1	1/f	+	0		0
16	1/f	0	f	1	1/f	_	1	-	1
17	1/f	1	w	2	3/f	-	2		2
18	l/p	1	f	1	2/w	-	0	-	0
19	1/p	2	f	2	1/f	_	2		0
20	1/p	2	w	1	1/f	-	2	-	1
21	1/p	0	w	2	0	~	2	_	2
22	1/f	1	w	1	2/f	-	1	-	0
23	3/p	1	w	1	0	-	0	-	_
24	2/f	1	w	1	0	+	0	-	2

Neilan, T. **CMR quantification of myocardial scar provides additive prognostic information in nonischemic cardiomyopat***hy. JACC Cardiovascular Imaging*, *6*(9), 944–954.

cardiomyopathy. JACC Cardiovascular Imaging, 6(9), 944–954. 2013 The LGE pattern was mid-myocardial in 52% of the patients, epicardial 26%, focal/insertion points in 20%, and diffuse in 2%.

The Characteristics and Distribution of the Scar Tissue Predict Ventricular Tachycardia in Patients with Advanced Heart Failure

MIKI YOKOKAWA, M.D.,* HIROSHI TADA, M.D.,* KEIKO KOYAMA, M.D.,* TOSHIHIKO INO, R.T.,* SHIGEKI HIRAMATSU, M.D.,* KENICHI KASENO, M.D.,* SHIGETO NAITO, M.D.,* SHIGERU OSHIMA, M.D.,* and KOICHI TANIGUCHI, M.D.* From the *Division of Cardiology, and †Radiology, Gunma Prefectural Cardiovascular Center, Maebashi, Gunma Japan **Results:** In the DCM group, almost all hyperenhanced areas were nontransmural, and presented frequently in the midwall layer. The volume of the hyperenhanced areas and total number of hyperenhanced segments were greater in patients with sustained VT than in those without. On the other hand, in the ICM group, transmural or subendocardial hyperenhanced areas were detected in the territory of the coronary arteries. The volume of the hyperenhanced areas and total number of transmural hyperenhanced segments in patients with sustained VT were unexpectedly smaller than in those without. However, the percentage of nontransmural hyperenhanced segments was greater in patients with sustained VT than in those without.

Compared with post-MI VT, the scar tends to be smaller and less confluent, the total number of the transmural scar segments is significantly smaller, and with less endocardial involvement in nonischemic CMP.

Table III.

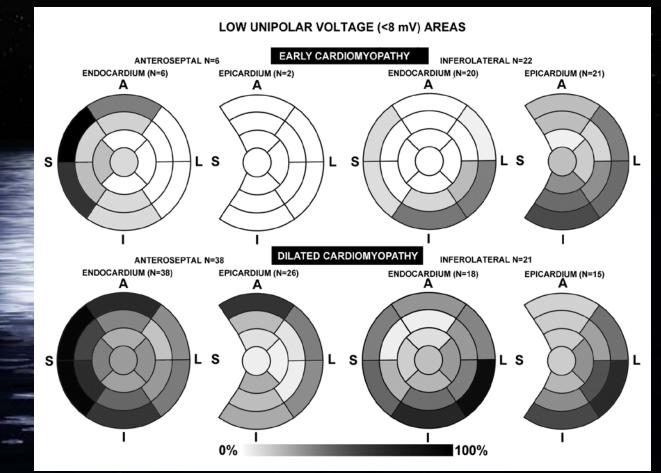
Measurement Variables of CMR in Patients with Dilated Cardiomyopathy (DCM) and Ischemic Cardiomyopathy (ICM)

	DCM (n = 29)	ICM (n = 18)	P Value
Enhancement, patient n (%)	18 (62)	18 (100)	<0.005
The volume of the hyperenhanced areas, %	6±9	36 ± 14	< 0.0001
Total hyperenhanced segments, n	3 ± 4	12 ± 3	<0.0001
Transmural hyperenhanced segments, n	0 ± 0	3 ± 2	< 0.0001
Nontransmural hyperenhanced segments, n	3 ± 4	8 ± 3	< 0.0001
Nontransmural /total hyperenhanced areas, %	97 ± 6	67 ± 20	<0.0001

Delayed-enhancement MR imaging typically reveals nontransmural scar areas often distributed in the basal portion of the ventricular free wall or basal to midportion of the septum. Table IV.

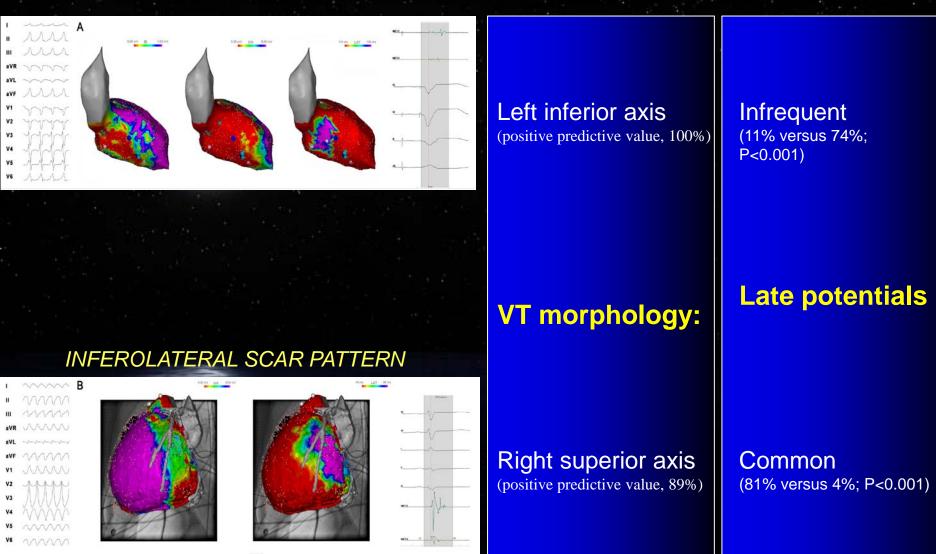
Measurement Variables of CMR in Patients with and Without Sustained VT in the Dilated Cardiomyopathy (DCM) and Ischemic Cardiomyopathy (ICM) Groups

		DCM (n = 29))		ICM (n = 18)	
	VT (+) (n = 12)	VT (–) (n = 17)	P Value	VT (+) (n = 8)	VT (–) (n = 10)	P Value
Enhancement, patient n (%)	12 (100)	6 (35)	<0.0001	8 (100)	10 (100)	1.0
The volume of the hyperenhanced areas, %	13 ± 11	2 ± 3	<0.01	25 ± 5	46 ± 11	<0.0001
Total hyperenhanced segments, n	6 ± 4	1 ± 2	<0.0001	11 ± 2	12 ± 3	0.8
Iransmural nyperennanced segments, n	0 ± 0	0 ± 0	0.9	2 ± 1	4 ± 2	<0.005
Nontransmural hyperenhanced segments, n	6 ± 4	1 ± 2	<0.0001	9 ± 2	7 ± 3	0.7
Nontransmural/total hyperenhanced areas, %	96 ± 7	100 ± 0	1.0	79 ± 11	57 ± 21	<0.05


The values are the mean \pm SD.

CMR = contrast-enhanced magnetic resonance imaging; n = number; VT = ventricular tachycardia.

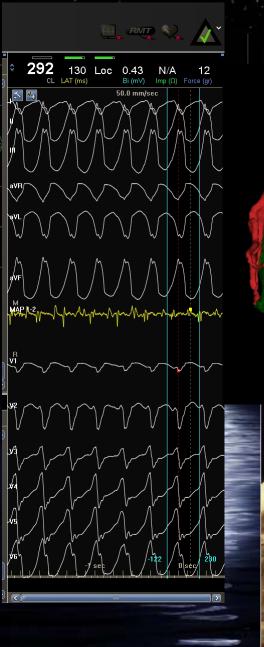
Oloriz, T., Silberbauer, J., Maccabelli, G et al. **Catheter Ablation of Ventricular Arrhythmia in Nonischemic Cardiomyopathy: Anteroseptal Versus Inferolateral Scar Sub-Types**. Circulation: Arrhythmia and Electrophysiology, 7(3), 2014


STUDY POPULATION
87 patients (CARTO)28 Early-Cardiomyopathy: LV volume: normal or mildly dilated, EF >45%59 Dilated-Cardiomyopathy, LV volume: moderate or severe dilatation, EF <45%</td>

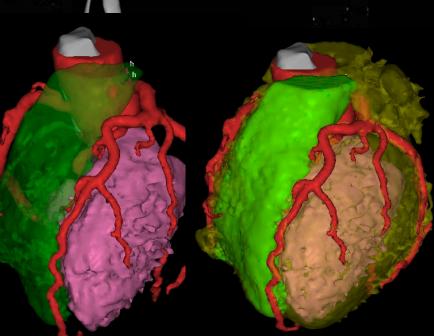
Patients were categorized as predominant Anteroseptal or Inferolateral scar type based on the majority percentage of endocardial segments (eight segments each) displaying a unipolar scar voltage less than 8mV, excluding the apex.

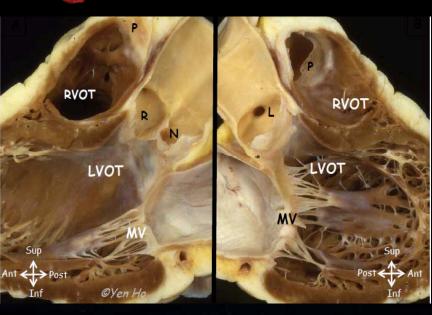
HSR - MILANO

ANTEROSEPTAL SCAR PATTERN

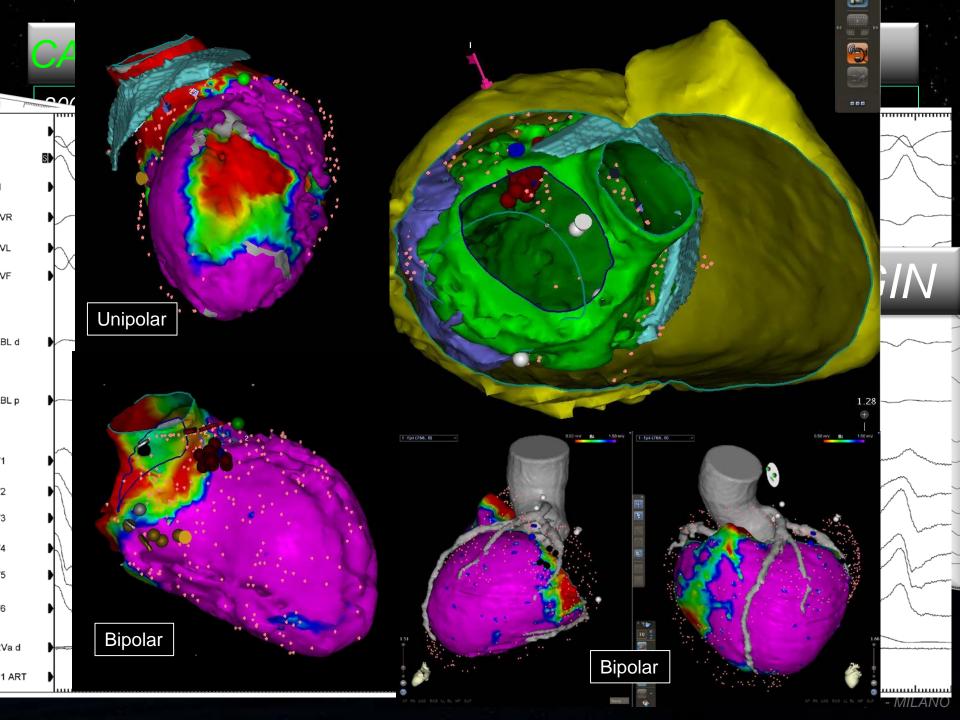

ABLATION SITE

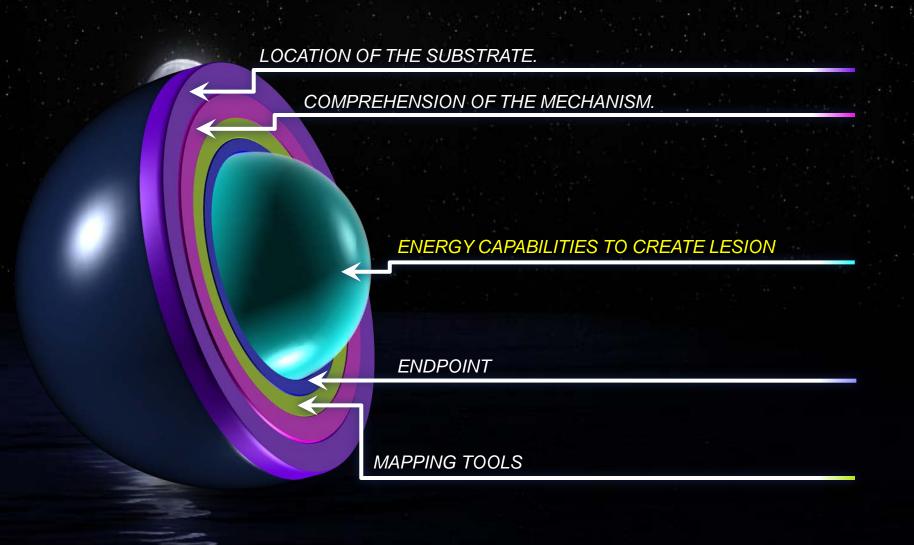
ADDITIONAL CLUES

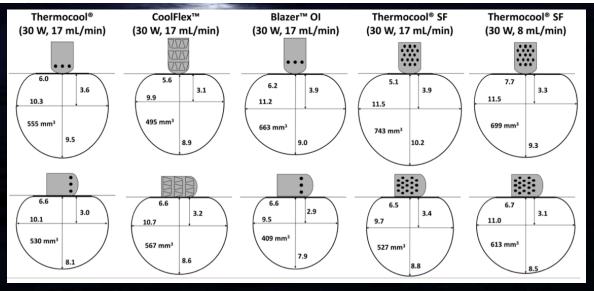

The higher proportion of anteroseptal patients fulfilling diagnostic criteria for DCM in our data may related to more extensive endocardial scarring and common intraventricular conduction delay, frequently as a left bundle branch block pattern, causing LV dyssynchrony and dysfunction, leading to a worse prognosis


A high proportion of inferolateral patients with or without LV dysfunction had a clinically suspected myocarditis supporting the possible role of viral infection in this subgroup

LEFT INFERIOR VT AXIS – AS PATTERN – ENDOCARDIAL ABLATION RIGHT SUPERIOR VT AXIS – IL PATTERN – ENDO-EPICARDIAL ABLATION




Frequent pattern in IDCM



ENERGY CAPABILITIES TO CREATE LESION: THE STUMBLING BLOCK

RADIOFREQUENCY ENERGY

	Co	oled-Tip RF Ablation (n=	65)	Standard R	F Ablation (n=33)
	Normal Tissue (n=37)	Normal Tissue on Fat (2.6±1.2 mm) (n=7)	Infarcted Tissue (n=21)	Normal Tissue (n=22)	Normal Tissue on Fat (3.1±1.2 mm) (n=11)
Power, W	44.8±6.8	45±4.4	35.6±7.1*	25±16.8*	16±14
Temperature, °C	39.7±3.2	40.2±2	41.4±2.2	68±6.2*	69±4.1
Initial impedance, Ω	146±24	146±16	110±12*	148±13	145±11
Impedance drop, Ω	27.8±10.3	27.6±10.1	19.7±4.4*	23.8±4*	17.1±2
Lesion characteristics					
Long axis, mm	15.9±3.5	15.6±4.2	14.6±2.7	14.9±2.7	11±4.7
Short axis, mm	13.7±3.5*	12.3±4.3	11.8±2.9	11±2.7	9±2.4
Depth, mm†	6.7±1.7* (4–9)	4.1±2 (1–7)	5.5±1.2* (4–8)	3.7±1.3 (2–6)	None

D'Avila et al Circulation, 2004

1ILANO

Biophysical Parameters During Radiofrequency Catheter Ablation of Scar-Mediated Ventricular Tachycardia: Epicardial and Endocardial Applications via Manual and Magnetic Navigation

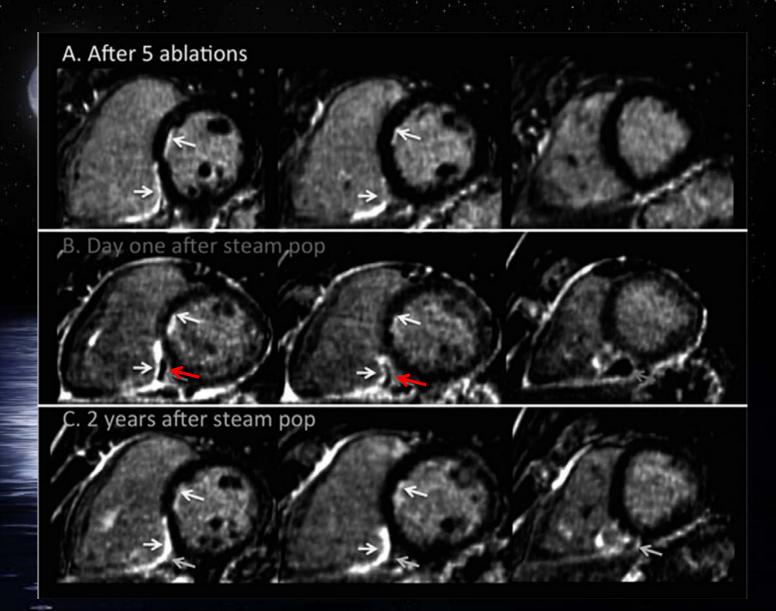
TARA BOURKE, M.D., ERIC BUCH, M.D., M.S., NILESH MATHURIA, M.D., YOAV MICHOWITZ, M.D., RICKY YU, B.S., RAVI MANDAPATI, M.D., KALYANAM SHIVKUMAR, M.D., PH.D., and RODERICK TUNG, M.D.

From the UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, California, USA

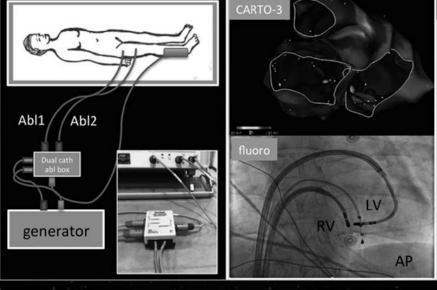
Ablation Effectiveness and Biophysical Parameters. *Background:* There is a paucity of data on biophysical parameters during radiofrequency ablation of scar-mediated ventricular tachycardia (VT).

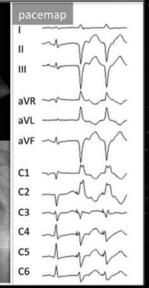
Methods and Results: Data were collected from consecutive patients undergoing VT ablation with openirrigation. Complete data were available for 372 lesions in 21 patients. The frequency of biophysical parameter changes were: > 10 Ω reduction (80%), bipolar EGM reduction (69%), while loss of capture was uncommon (32%). Unipolar injury current was seen in 72% of radiofrequency applications. Both EGM reduction and impedance drop were seen in 57% and a change in all 3 parameters was seen in only 20% of lesions. Late potentials were eliminated in 33%, reduced/modified in 56%, and remained after ablation in 11%. Epicardial lesions exhibited an impedance drop (90% vs. 76%, P = 0.002) and loss of capture (46% vs. 27%, P < 0.001) more frequently than endocardial lesions. Lesions delivered manually exhibited a >10 Ω impedance drop (83% vs. 71%, P = 0.02) and an EGM reduction (71% vs. 40%, P < 0.001) more frequently than lesions applied using magnetic navigation, although loss of capture, elimination of LPs, and a change in all 3 parameters were similarly observed.

Conclusions: VT ablation is inefficient as the majority of radiofrequency lesions do not achieve more than one targeted biophysical parameter. Only one-third of RF applications targeted at LPs result in complete elimination. Epicardial ablation within scar may be more effective than endocardial lesions, and lesions applied manually may be more effective than lesions applied using magnetic navigation. New technologies directed at identifying and optimizing ablation effectiveness in scar are clinically warranted. (*J Cardiovasc Electrophysiol, Vol. pp. 1-9*)

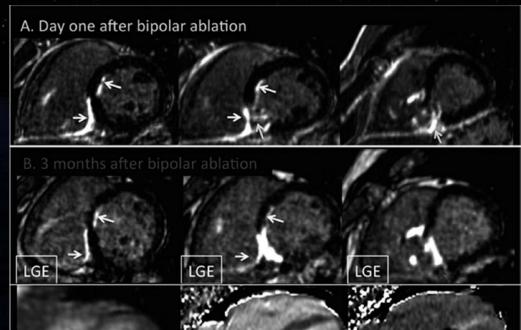

ENERGY CAPABILITIES TO CREATE LESION: THE STUMBLING BLOCK

HINT INCREASE THE ENERGY ??


			50W, 30	mL/min		50W, 15 mL/min	Global
		BW ThermoCool [®]	SJM CoolFlex [™]	BSc Blazer [™] Ol	BW SF-30	BW SF-15	p value
	# Lesions	12	12	12	12	12	
V	Voltage (V)	60.7±1.8	60.6±1.6	59.6±1.8	59.8±2.5	60.8±1.6	n.s.
	Current (mA)	805±17	834±12	845±20	835±22	826±18	n.s.
	Power (W)	49.8±0.2	49.9±0.1	49.8±0.4	49.8±0.2	49.9±0.2	n.s.
P	Impedance (Ω)						
F	- Initial	121±14	110±16	115±16	117±15	123±16	n.s.
Perpendicular	- Final	93±12	96±18	92±17	88±15	92±11	n.s.
ġ	- Minimum	85±11	84±14	82±13	83±15	87±13	n.s.
- Le	Tip Temperature (°C)						
La la	- Mean	38.4±3.2 * •	41.2±6.5 Ŧ‡¶	34.8±2.5 ‡	33±1.4 *Ŧ	33.4±0.8 •¶	<0.001
<u>م</u>	- Maximum	43.9±4.8	48.2±14.6*•	42±11.8	37.9±1.8•	36.8±1.2*	0.008
Y							
	Pop before 30s	1 (8%)	8 (67%)	0 (0%)	2 (17%)	3 (25%)	
<	Pop before 60s	3 (25%)	12 (100%)	4 (33%)	2 (17%)	6 (50%)	
	Pop before 90s	9 (75%)	12 (100%)	9 (75%)	8 (67%)	8 (67%)	
	Pop before 180s	12 (100%)	12 (100%)	12 (100%)	9 (75%)	11 (91%)	


-

MRI data before and after sixth ablation procedure.

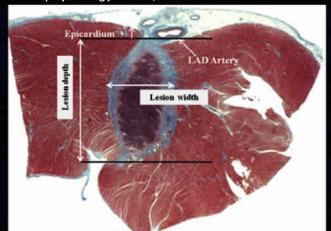

Berte, Circulation 2014 ANO

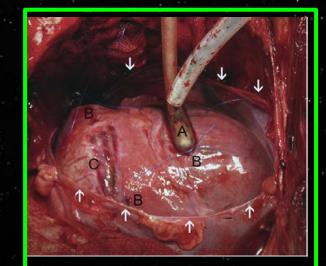
Perfusion first pass

Bipolar ablation

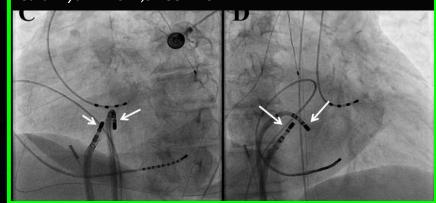
•

Ti1 map pre Gd


J1 map post Gd


Alternative energy delivery modalities

Sapp JL, Beeckler C, Pike C, Parkash R, Gray CJ, Zeppenfeld K, Kuriachan V, Stevenson WG. Initial human feasibility of infusion needle catheter ablation for refractory ventricular tachycardia. Circulation. 2013;128:2289-2295.


Koruth JS, Dukkipati S, Carrillo RG, Coffey J, Teng J, Eby TB, Reddy VY, D'avila A. **Safety and efficacy of High-Intensity focused ultrasound atop coronary arteries during epicardial catheter ablation.** Journal of Cardiovascular Electrophysiology. 2011;22:1274-1280

Neven, K., van Driel, V., van Wessel, H., van Es, R., DOEVENDANS, P. A., & Wittkampf, F (2014). Epicardial linear electroporation ablation and lesion size. Heart Rhythm 11(8), 1465-1470.

Koruth JS, Dukkipati S, Miller MA, Neuzil P, D'Avila A, Reddy VY. Bipolar irrigated radiofrequency ablation: a therapeutic option for refractory intramural atrial and ventricular tachycardia circuits. Heart Rhythm. 2012;9:1932–1941.

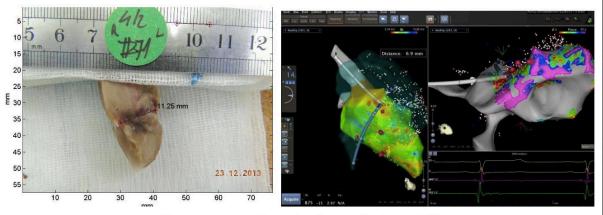


Figure 4- Animal #71 Lesion #4 (point # 412)

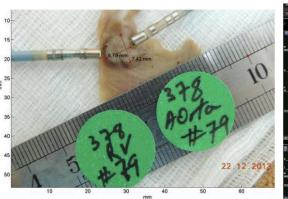
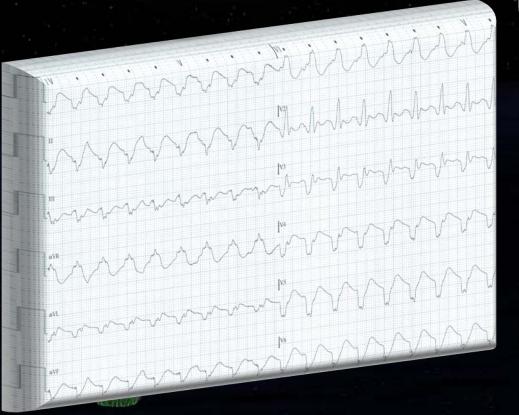


Figure 5 - Animal # 79 lesion # 6 (point #378)

E 30 - 35 - 40 - 55 - 55 - 10	20 30 44		23.12.201 60 70 4- Anima	Acquire 875 -1	ion #4 (point	# 412)				Bipolar ablan		
10 15 20 20 30 35 40	0.787mm 7.42 mm	378	29.			Distance: 5.3 m					tion lesio	
45	20 30 mm	Ho 50	22.12.2 60	NET THE REPORT OF THE	Sion # 6 (no	140 1395 dama (190) dama (190) dama (190) dama (190)		I I I I I I I I I I I I I I I I I I I			n asse	
45	20 30 mm	How the figure	5 - Anin	al # 79 les	sion # 6 (po	int #378		Respiration Gating	"	Comment	nasse	55
		Figure	5 - Anin	NET THE REAL PROPERTY OF THE R		alazan ^h a pedidadaha		Respiration Cating			nasse	255
45 50 10 Animal No. # point on C3	20 30 mm	40 50 Figure Map cath. Iocation	5 - Anin	al # 79 les		int #378		Respective Cation	nm) Outer width		nasser	assmen
	79	Map cath.	5 - Anin Abiat	nal # 79 les	Average force	int #378 (mm)	3) Outer	Inner	Outer		nasser	assmen
# point on C3	79 Abl. Session	Map cath. location	5 - Anin Adrat	nal # 79 les non parameter Time (sec)	Average force (g)	int #378 (mm) Inner depth 4.4	3) Outer depth	Inner width	Outer width	Comment	nasse	assment
# point on C3 #368	79 Abl. Session	Map cath. location LV	5 - Anin Adiat	Time (sec)	Average force (g) 19	int #378 (mm) Inner depth 4.4	B) Outer depth 6.85	Inner width 6.55	Outer width 9.83	Comment RV lesion was not found	nasser	assment
# point on C3 #368 #370	79 Abl. Session 1 2	Map cath. location LV LV	5 - Anin Adiat RF power (W) 20 20	Time (sec)	Average force (g) 19 10	int #378 (mm) Inner depth 4.4	3) Outer depth 6.85 1.36	Inner width 6.55 RV 8.22	Outer width 9.83 LV 10.3	Comment RV lesion was not found	nasser	assment
# point on C3 #368 #370 #380	79 Abl. Session 1 2 3	Map cath. location LV LV	80 5 - Anin Abiat RF power (W) 20 20 25	Time (sec) 60 60 60	Average force (g) 19 10 15	int #378 (mm) Inner depth 4.4 1 8.54	Outer depth 6.85 1.36 9.67	Inner width 6.55 RV 8.22 9.3	Outer width 9.83 LV 10.3 13.01	Comment RV lesion was not found	nasser	assment
# point on C3 #368 #370 #380 #380	79 Abl. Session 1 2 3 3 3	Map cath. location LV LV LV RV	Figure Figure<	Time (sec) 60 60 60 60 60 60 60	Average force (g) 19 10 15 15	int #378 (mm) Inner depth 4.4 1 8.54 7.51	Outer depth 6.85 1.36 9.67 8.34	Inner width 6.55 RV 8.22 9.3 9.51	Outer width 9.83 LV 10.3 13.01 13.68	Comment RV lesion was not found	nasser	assment
# point on C3 #368 #370 #380 #380 #374	79 Abl. Session 1 2 3 3 4	Map cath. location LV LV LV RV LV RV LV RV LV	60 5 - Anin Abiat RF power (W) 20 20 20 25 25 25 25 25	Time (sec) 60 60 60 60 60 60 60 60 60 60 60	Average force (g) 19 10 15 15 15 15	int #378 (mm) Inner depth 4.4 1 8.54 7.51 5.77 5.87	Outer depth 6.85 1.36 9.67 8.34 7.75	Inner width 6.55 RV 8.22 9.3 9.51 8.63	Outer width 9.83 LV 10.3 13.01 13.68 11.64	Comment RV lesion was not found	nasser	assment
# point on C3 #368 #370 #380 #380 #374 #374	79 Abl. Session 1 2 3 3 4 4 4	Map cath. location LV LV LV RV LV RV RV	Fill Fill RF power (W) 20 20 20 25 25 25 25 25 25 25 25	Time (sec) 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60	Average force (g) 19 10 15 15 15 15 15	int #378 (mm) Inner depth 4.4 1 8.54 7.51 5.77 5.87 1	Outer depth 6.85 1.36 9.67 8.34 7.75 6.74	Inner width 6.55 RV 8.22 9.3 9.51 8.63 8	Outer width 9.83 LV 10.3 13.01 13.68 11.64 11.96	Comment RV lesion was not found TM lesion	nasser	ssment

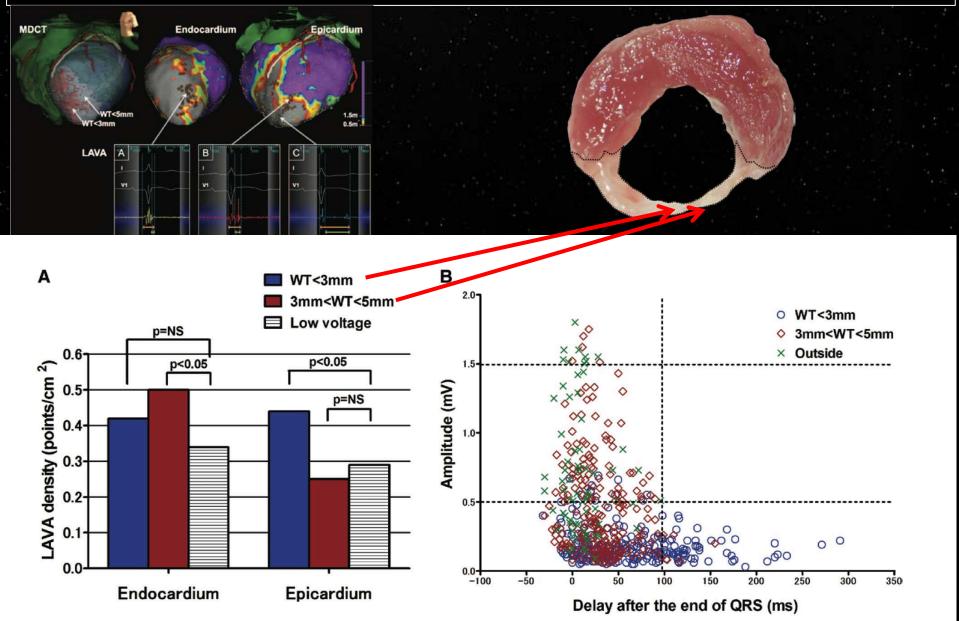
Thanks for your attentionGracias por su atenciónDanke für Ihre AufmerksamkeitMerci pour votre attention당신의 주의를 위한 감사합니다Cпасибо для вашего внимания



谢您的注意

BASAL ECG

Echo: LVEF 20%, extensive scar of the inferior IV septum and inferior wall, hypokinesis of the other walls,



HSR - MILANO

SR - MILANO

Komatsu, Y.,. Regional Myocardial Wall Thinning at Multidetector Computed Tomography Correlates to Arrhythmogenic Substrate in Postinfarction Ventricular Tachycardia: Assessment of Structural and Electrical Substrate. Circulation: Arrhythmia and Electrophysiology 2013

 \mathbf{F} in the probability of the second degree of the second degree \mathbf{F} is the probability of the probab