### ADVANCES IN CARDIAC ARRHYTHMIAS and GREAT INNOVATIONS IN CARDIOLOGY XXIX GIORNATE CARDIOLOGICHE TORINESI – 27th October 2017

## The ICD in nonischemic cardiomyopathy: should we change our practice?



Davide Castagno, MD, PhD Division of Cardiology Department of Medical Sciences University of Turin

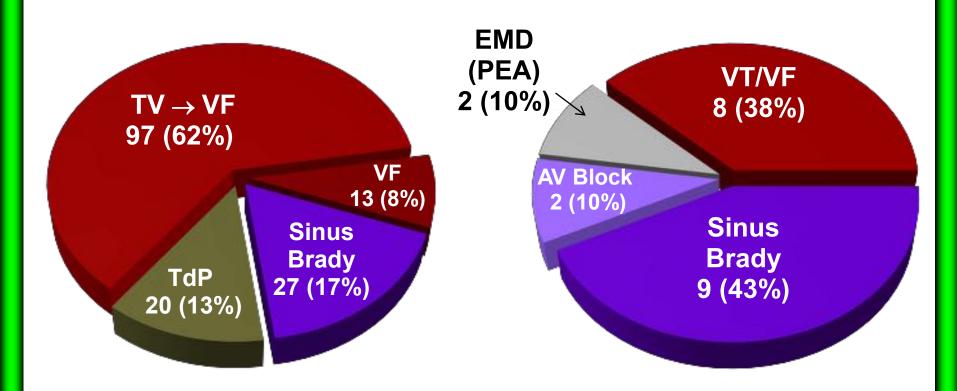


## SCD Epidemiology in Heart Failure (HF)

In the pre-implantable cardioverter defibrillator (ICD) era SCD accounted for ≈ 1/3 of all deaths in the HF population

> The CONSENSUS Trial Study Group *N Engl J Med 1987*; 316:1429-1435 Pitt B et al. *N Engl J Med 1999*; 341:709-717

From 30% to 50% of all SCD events occur in a patient with known reduced left ventricular ejection fraction (LVEF)


> Chugh SS et al. *Prog Cardiovasc Dis 2008*; 51:213-228 Stecker EC et al. *J Am Coll Cardiol 2006*; 47:1161-1166

HF is one of the greatest risk factors for out-ofhospital cardiac arrest

Rea TD et al. Am J Cardiol 2004; 93:1455-1460

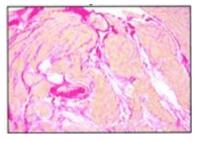
### **Diverse Mechanisms of Unexpected SCD**

157 patients with and without structural heart disease died while wearing Holter ECG 20 HF patients hospitalized with NYHA III/IV, severe LVSD experiencing cardiac arrest



Bayes de Luna A. et al. *Am Heart J* 1989; 117:151-159

Luu M. et al. Circulation 1989; 80:1675-1680


## Pathophysiology of SCD in HF

### **Modulating Factors**

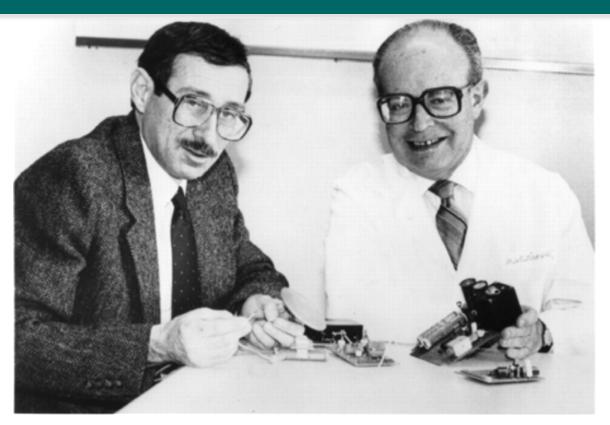
↑ Sympathetic Activation↓ Parasympathetic Tone

Hypertrophy LV Dilatation LV Remodelling Scar formation/Fibrosis Conduction Abnormalit.

### Substrate



Coumel's Triangle

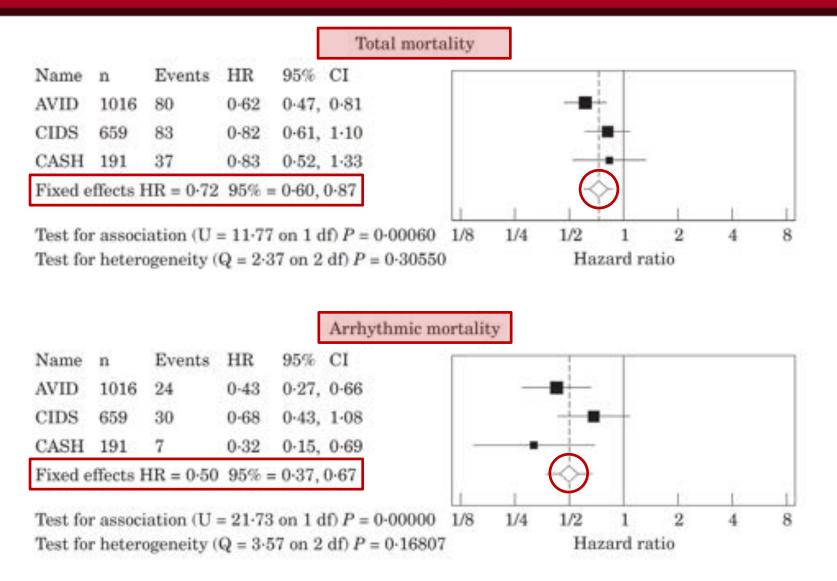

SCD

PVCs and VTs Electrolyte Imbalances Myocardial Ischaemia Haemodynamic Changes

Triggers

## **ICD and SCD Prevention**

### First Human Implant February 1980 John Hopkins Hospital, Baltimore, MD, USA




Drs Morton Mower (left) and Michel Mirowski (right) with their first prototype of an automatic defibrillator

## **ICDs and Secondary SCD Prevention**

|                     | AVID (1997)                                                                                                                                                                        | CIDS (2000)                                                                                                                                                                                                         | CASH (2000)                                                                   |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Inclusion Criteria  | <ul> <li>Resuscitated from VF</li> <li>VT with syncope</li> <li>VT with LVEF&lt;40%<br/>and hemodynamic<br/>compromise (near<br/>syncope, angina, or<br/>heart failure)</li> </ul> | <ul> <li>Resuscitated from VF-VT</li> <li>VT with syncope</li> <li>VT &gt; 150 bpm with LVEF<br/>&lt;35% and syncope or<br/>angina</li> <li>Unmonitored syncope<br/>with spontaneous or<br/>inducible VT</li> </ul> | - Resuscitated SCD with<br>documented<br>sustained ventricular<br>arrhythmias |
| Patients, n         | 1016                                                                                                                                                                               | 659                                                                                                                                                                                                                 | 288                                                                           |
| Mean age, y         | 65 y                                                                                                                                                                               | 64 y                                                                                                                                                                                                                | 58 y                                                                          |
| Mean LVEF, %        | 31                                                                                                                                                                                 | 33                                                                                                                                                                                                                  | 46                                                                            |
| Follow-up, months   | 18                                                                                                                                                                                 | 36                                                                                                                                                                                                                  | 57                                                                            |
| Drug in control grp | Amiodarone 85%<br>Sotalol 15%                                                                                                                                                      | Amiodarone                                                                                                                                                                                                          | Amiodarone 49%<br>Metoprolol 51%                                              |
| Other features      | 79% men<br>81% CAD<br>50% heart failure                                                                                                                                            | 85% men<br>80% CAD<br>50% heart failure                                                                                                                                                                             | 80% men<br>73% CAD<br>10% without SHD                                         |

### **ICDs and Secondary SCD Prevention**

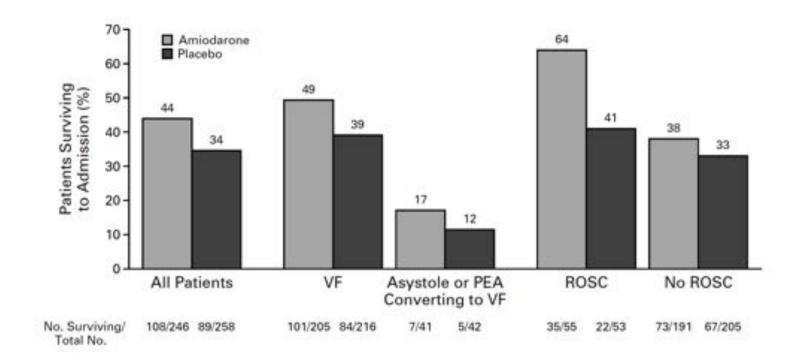


Connolly S. et al. *Eur Heart J 2000;* 21:2071-8

## **ICDs and Secondary SCD Prevention**

2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

#### Recommendations

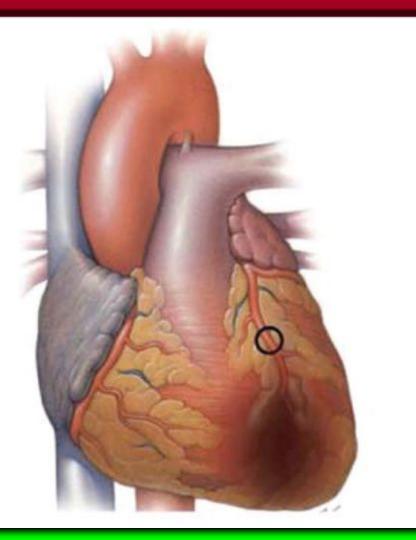

#### **Secondary Prevention**

An ICD is recommended to reduce the risk of sudden death and all-cause mortality in patients who have recovered from a ventricular arrhythmia causing haemodynamic instability, and who are expected to survive for > 1 year with good functional status

| Class | Level |
|-------|-------|
|       | A     |

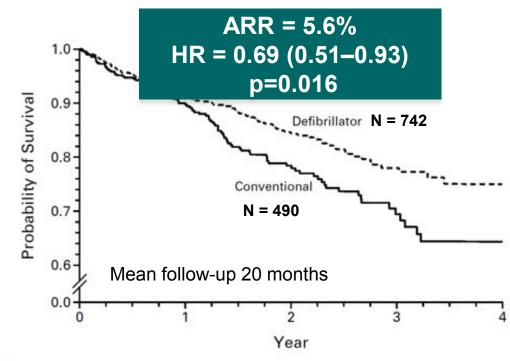
*Eur Heart J* 2016; 37(27):2129-200

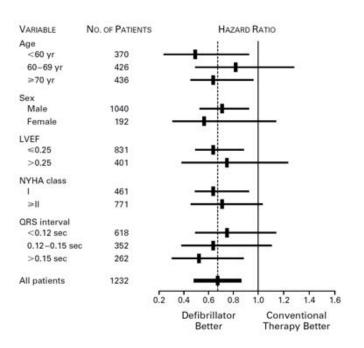
## **Survival and QoL after Resuscitation**




- 44% (amiodarone) vs. 34% (placebo) of patients reached the hospital alive after VF/CPR
- □ Only 13% (67 of 504) pts. were dismissed alive
- Only 6.9% (35 of 504) could lead an independent life after VF/CRP

## **ICDs and Primary SCD Prevention**


| Study      |                                                                         | Patients<br>(n)  | Inclusion criteria                                              | Therapy                                                                              | Hazard<br>ratio            | 95% CI                 | P<br>value       |
|------------|-------------------------------------------------------------------------|------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------|------------------------|------------------|
| AMOVIRT    | Amiodarone versus Implantable<br>Cardioverter-Defibrillator             | 103              | NYHA HIL DCM.<br>arymptomatic NSVT,<br>LVEF ±0.35               | ICD vs. amiodarone                                                                   | 0.87                       | 031-2.42               | NS               |
| CABG-Patch | Coronary Artery Bypess Graft<br>Patch trail                             | 900              | Scheduled for CABG,<br>LVEF ≤0.35, positive<br>SAECG            | ICD vs. standard medical<br>therapy                                                  | 1.07*                      | 081-1.42               | Nő               |
| CAT        | Cardiomyopathy Trial                                                    | 104              | NYHA II or IIL DCH≤9<br>months, LVEF ≤030                       | ICD vs. standard medical<br>thorapy                                                  | 0.83                       | 0.45-1.82              | NS               |
| DEFINITE   | Defibrillators in Nonischemic<br>Cardionyopathy Treatment<br>Evaluation | 458              | DCH, LVEF ≤0.35,<br>PVCL, or NSVT                               | ICD vs. standard medical<br>thorapy                                                  | 0.65"<br>0.20 <sup>h</sup> | 0.40-1.06<br>0.06-0.71 | 0.08             |
| DINAMIT    | Defibritiator in Acute Hyocardial<br>Infarction Trial                   | 674              | Recent ML LVEF ≤0.35,<br>impaired cardiac<br>autonomic function | ICD vs. standard medical<br>therapy                                                  | 1.08°<br>0.42 <sup>8</sup> | 0.76-1.55<br>0.22-0.83 | N5<br>0.009      |
| RS         | Immediate Risk Stratification<br>Improves Survival                      | 898              | Recent ML LVEF <0.40,<br>or NSVT                                | ICD vs. standard modeal<br>thorapy                                                   | 1.04                       | 081-1.35               | Nδ               |
| MADIT      | Multicenter Automatic<br>Defibrilizer Implantation<br>Trial             | 196              | NYHA I-III, prior MI,<br>LVEF <0.35, NSVT,<br>and positive EPS  | ICD vs. standard medical<br>shorapy                                                  | 0.46*                      | 026-0.82               | 0.009            |
| MADIT-II   | Multicenter Automatic<br>Deforiliator Implantation<br>Trial-II          | 1232             | Prior MI, LVBF 5030                                             | ICD vs. standard medical<br>Brocey                                                   | 0.69*                      | 051-0.93               | 0.016            |
| HUSTT      | Hulticenter Unsustained<br>Tachycardia Trial                            | 351 <sup>e</sup> | CAD, LVEF ≤0.40,<br>NSVT, and positive<br>EPS                   | ICD vs. conventional<br>antiamhythmic<br>therapy                                     | 0.40°<br>0.24°             | 027-0.59<br>0.13-0.45  | <0.001<br><0.001 |
| SCD-HeFT   | Sudden Cardiac Death in Heart<br>Failure Trial                          | 1676*            | NYHA II or IIL LVEF<br><pre></pre>                              | ICD plus standard<br>medical therapy vs.<br>placebo plus standard<br>medical therapy | 0.77*                      | 062-0.96               | 0.007            |


## ICDs and Primary SCD Prevention in Ischaemic Cardiomyopathy



## MADIT II (1997-2001)

- □ ≥ 1 months after myocardial infarction
- □ LVEF ≤ 30% + multiple / repetitive PVCs on Holter
- EP study not required
- Inclusion of 1232 patients between 7/1997 11/2001



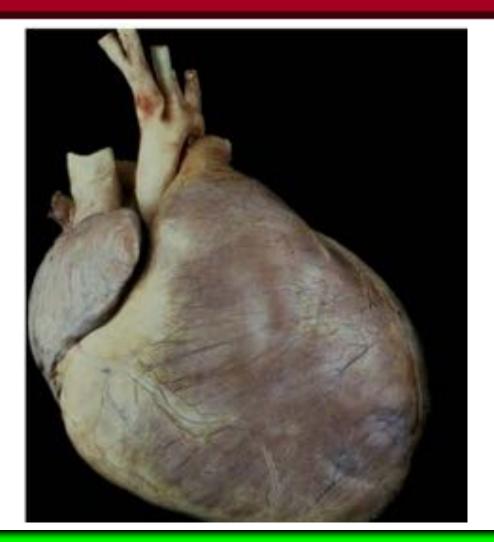


Moss A, et al. N Engl J Med 2002; 346:877-884

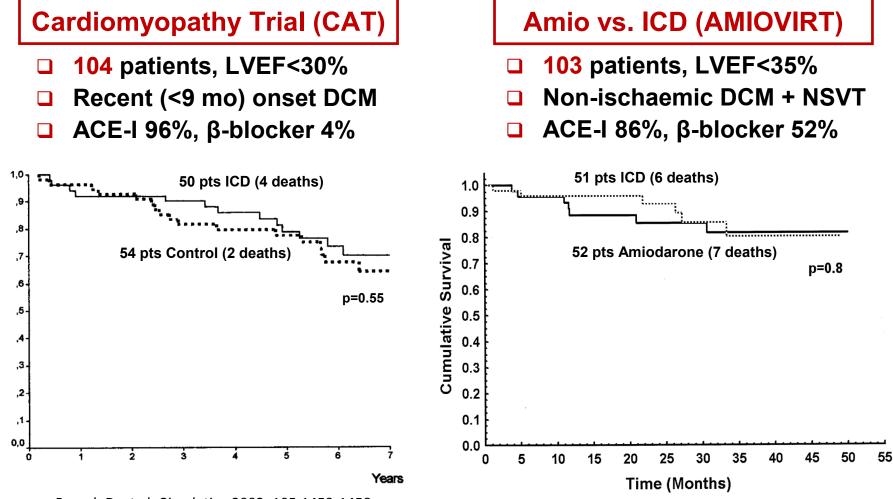
## **ICDs and Primary SCD Prevention**

# 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

#### Recommendations


#### **Primary Prevention**

An ICD is recommended to reduce the risk of sudden death and all-cause mortality in patients with symptomatic HF (NYHA Class II-III), and an LVEF  $\leq$ 35% despite  $\geq$ 3 months of OMT, provided they are expected to survive substantially longer than one year with good funnctional status, and they have:

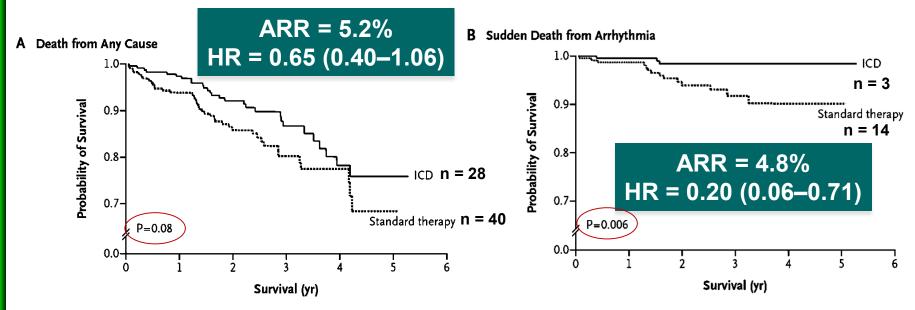

• IHD (unless they have an MI in the prior 40 days)



## ICDs and Primary SCD Prevention in Nonischaemic Cardiomyopathy



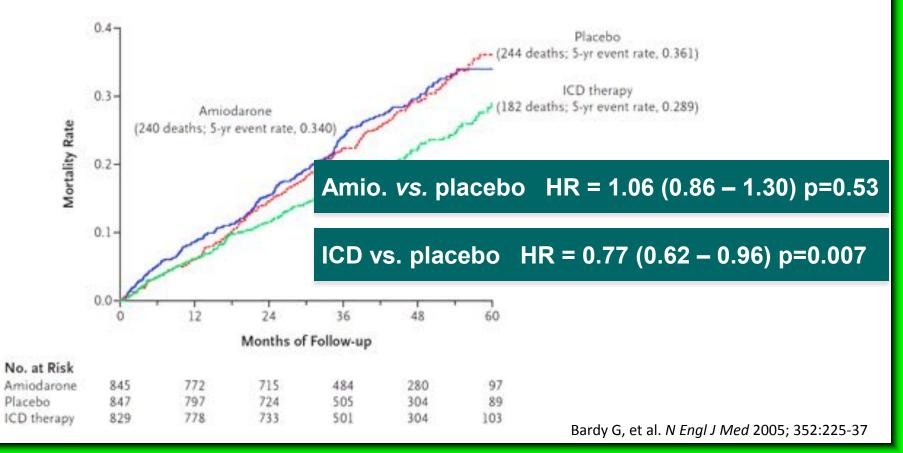
## ICD in Nonischaemic Cardiomyopathy First Randomized Controlled Trials




Bansch D. et al. Circulation 2002; 105:1453-1458

Strickberger AS. et al. J Am Coll Cardiol 2003; 41:1707-12

## **DEFINITE Trial (2004)**


Non-ischaemic cardiomyopathy, LVEF < 36%, NYHA I–III</li>
 nsVT (3-15 cycles >120 bpm) or >10 PVCs/h (Ø EP Study)
 ICD (229 pts.) *vs.* Standard treatment (229 pts.)
 86% pts. on ACE-I and 85% pts. on β-blocker



Kadish N, et al. N Engl J Med 2004; 350:2151-58

## SCD-HeFT Trial (2005)

- 2521 patients with any cardiomyopathy (ICM + NICM)
   LVEF ≤ 35%, NYHA II III
- **96% pts. on ACE-I / ARB and 69% pts. on β-blocker**



## **ICDs and Primary SCD Prevention**

# 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

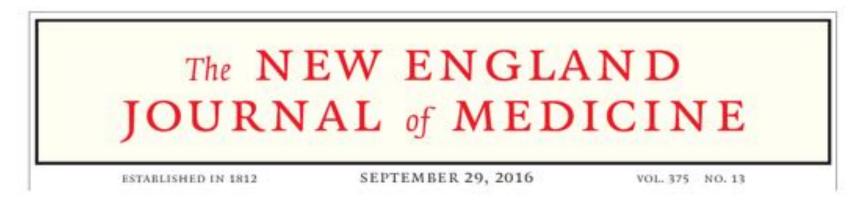
#### Recommendations

#### **Primary Prevention**

An ICD is recommended to reduce the risk of sudden death and all-cause mortality in patients with symptomatic HF (NYHA Class II-III), and an LVEF  $\leq$ 35% despite  $\geq$ 3 months of OMT, provided they are expected to survive substantially longer than one year with good funnctional status, and they have:

#### • DCM (Dilated Cardiomyopathy)

| Class | Level |
|-------|-------|
| I     | В     |


Eur Heart J 2016; 37(27):2129-200

## Primary Prophylactic ICD in Nonischaemic Cardiomyopathy



Based on small to medium sized trials with neutral outcomes and subgroup analysis of larger trials


Medical therapy has improved since the landmark ICD trials

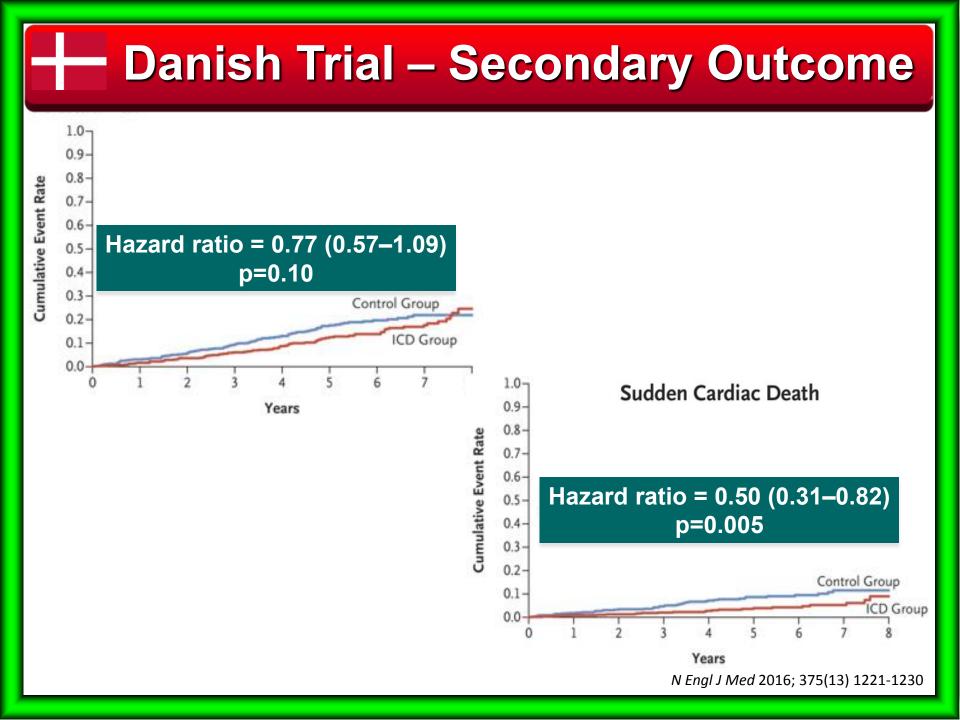


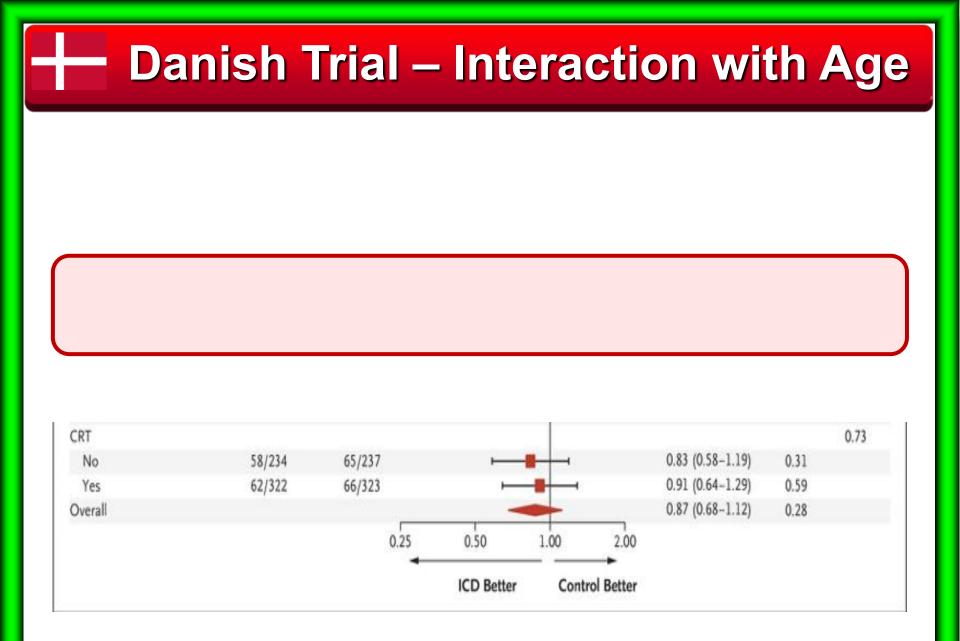
#### Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure

Lars Køber, M.D., D.M.Sc., Jens J. Thune, M.D., Ph.D., Jens C. Nielsen, M.D., D.M.Sc., Jens Haarbo, M.D., D.M.Sc., Lars Videbæk, M.D., Ph.D., Eva Korup, M.D., Ph.D., Gunnar Jensen, M.D., Ph.D., Per Hildebrandt, M.D., D.M.Sc., Flemming H. Steffensen, M.D., Niels E. Bruun, M.D., D.M.Sc., Hans Eiskjær, M.D., D.M.Sc., Axel Brandes, M.D., Anna M. Thøgersen, M.D., Ph.D., Finn Gustafsson, M.D., D.M.Sc., Kenneth Egstrup, M.D., D.M.Sc., Regitze Videbæk, M.D., Christian Hassager, M.D., D.M.Sc., Jesper H. Svendsen, M.D., D.M.Sc., Dan E. Høfsten, M.D., Ph.D., Christian Torp-Pedersen, M.D., D.M.Sc., and Steen Pehrson, M.D., D.M.Sc., for the DANISH Investigators\*

### 1116 HF patients NYHA II-III (IV if planned CRT), LVEF ≤35% with non-ischaemic aetiology




## Danish Trial – Study Overview


| Catheterization                       | 533 (96) | 541 (97) |
|---------------------------------------|----------|----------|
| Cause of heart failure — no. (%)      | 2017     | 24-24    |
| Idiopathic                            | 424 (76) | 425 (76) |
| Valvular                              | 20 (4)   | 21 (4)   |
| Hypertension                          | 62 (11)  | 55 (10)  |
| Other                                 | 50 (9)   | 59 (11)  |
| Medications — no. (%)                 | an bear  | 14.544   |
| ACE inhibitor or ARB                  | 533 (96) | 544 (97) |
| Beta-blocker                          | 509 (92) | 517 (92) |
| Mineralocorticoid-receptor antagonist | 326 (59) | 320 (57) |
| Amiodarone                            | 34 (6)   | 32 (6)   |
| CRT — no. (%)                         | 322 (58) | 323 (58) |

## Danish Trial – Primary Outcome

At a median of 67.6 months, there was no significant difference in mortality between the two groups

### Hazard ratio = 0.87 (0.68–1.12) p=0.28





The NEW ENGLAND JOURNAL of MEDICINE

#### EDITORIALS



### The ICD in Heart Failure — Time for a Rethink?

John J.V. McMurray, M.D.

Most ICD recipients never experience ICD therapy

Bardy GH et al. N Engl J Med 2005; 352:225-237

## **Risk stratification and prediction of SCD**

### "Prediction is very difficult, especially about the future"

Niels Bohr (1885-1962)



### Nonsustained VTs and risk of SCD in HF



Non-sustained ventricular tachycardia as a predictor of sudden cardiac death in patients with left ventricular dysfunction: A meta-analysis

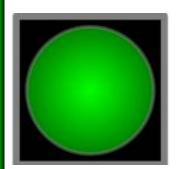
Marcos R. de Sousa<sup>a,b,\*</sup>, Carlos A. Morillo<sup>c</sup>, Fábio T. Rabelo<sup>b</sup>, Antônio M. Nogueira Filho<sup>d</sup>, Antonio L.P. Ribeiro<sup>a,b</sup>

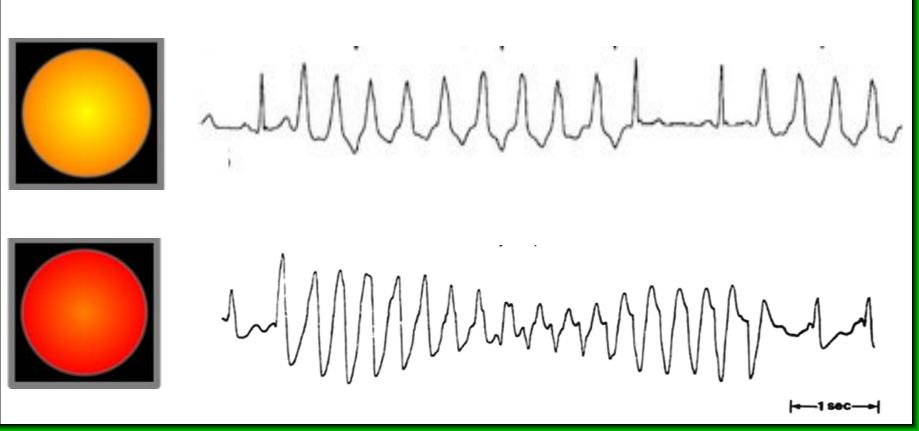


Predictors of Appropriate Implantable Cardioverter Defibrillator (ICD) Therapy in Primary Prevention Patients with Ischemic and Nonischemic Cardiomyopathy

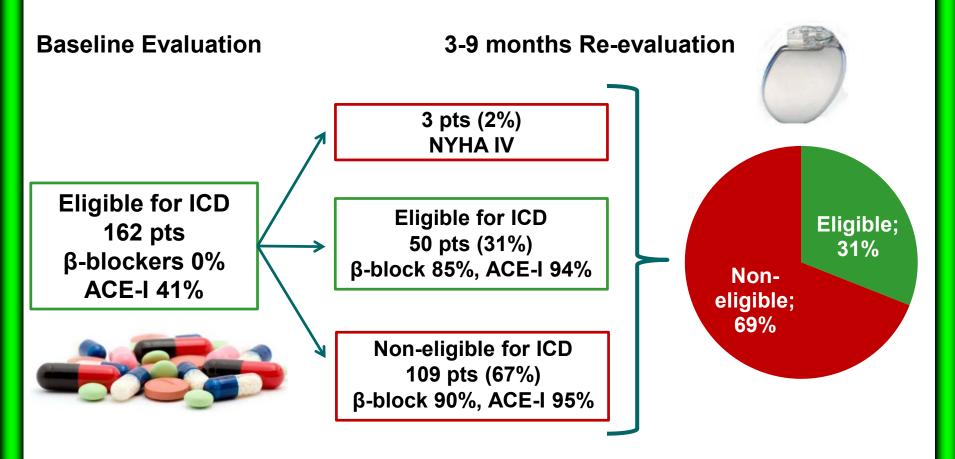
ATUL VERMA, M.D., BRADLEY SARAK, B.Sc., ALEXANDER J. KAPLAN, B.Sc., RICHARD OOSTHUIZEN, B.Sc., MARIANNE BEARDSALL, R.N. M.S.N.,

### **Increased SCD risk in patients with Non-sustained VT**



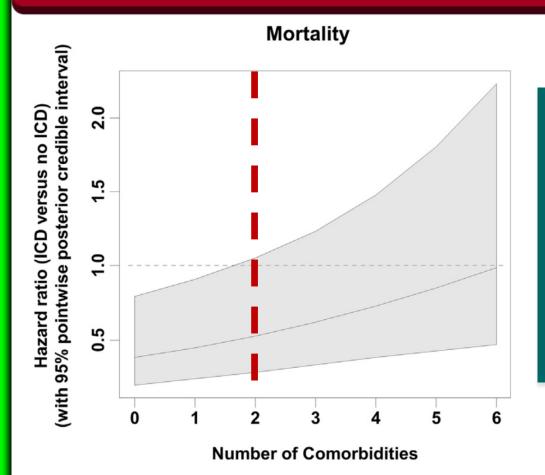


### Circulation

Nonsustained Ventricular Tachycardia in Severe Heart Failure Independent Marker of Increased Mortality due to Sudden Death


Hernan C. Doval, Daniel R. Nul, Hugo O. Grancelli, Sergio D. Varini, Saul Soifer, Gianni Corrado, Sergio Dubner, Omar Scapin and Sergio V.

### **Not All Nonsustained VTs Are Created Equal**

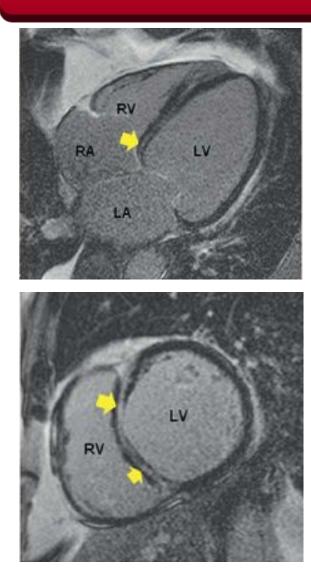


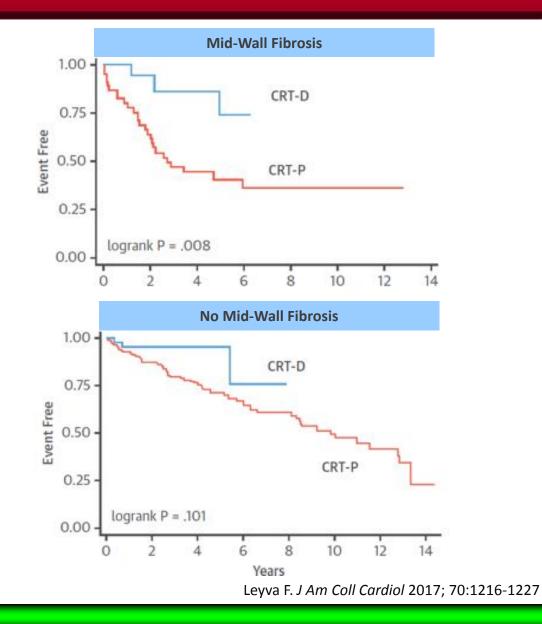



How Can Optimization of Medical Treatment Avoid Unnecessary Implantable Cardioverter-Defibrillator Implantations in Patients With Idiopathic Dilated Cardiomyopathy Presenting With "SCD-HeFT Criteria?"



Adapted from Zecchin M, et al. Am J Cardiol 2012; 109:729-735


### Impact of Comorbidities on ICD Benefit




Smoking
 Diabetes
 Ischaemic Heart Disease
 Peripheral Vascular Dis.
 Atrial Fibrillation
 eGFR <60 ml/min</li>
 COPD

**CONCLUSIONS** Patients with extensive comorbid medical illnesses may experience less benefit from primary prevention ICDs than those with less comorbidity; implantation should be carefully considered in sick patients. Further study of ICDs in medically complex patients is warranted.

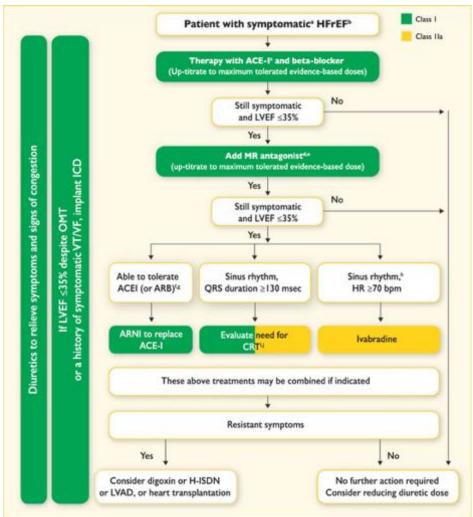
### **Role of Left Ventricular Midwall Fibrosis**





## Take Home Messages

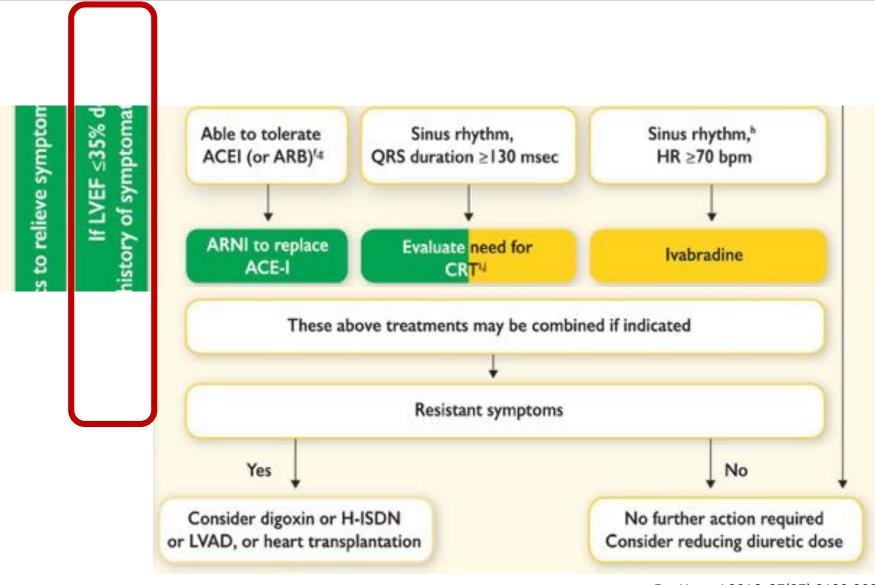
The role of ICD in treatment of Ventricular Arrhythmias and prevention of SCD among patients with HF and reduced LVEF is established


## HOWEVER

- Evidence for nonischaemic CMP are less robust
- Optimized medical therapy is mandatory
- Risk stratification before implantation is crucial
- Comorbidities/fibrosis may influence ICD benefit

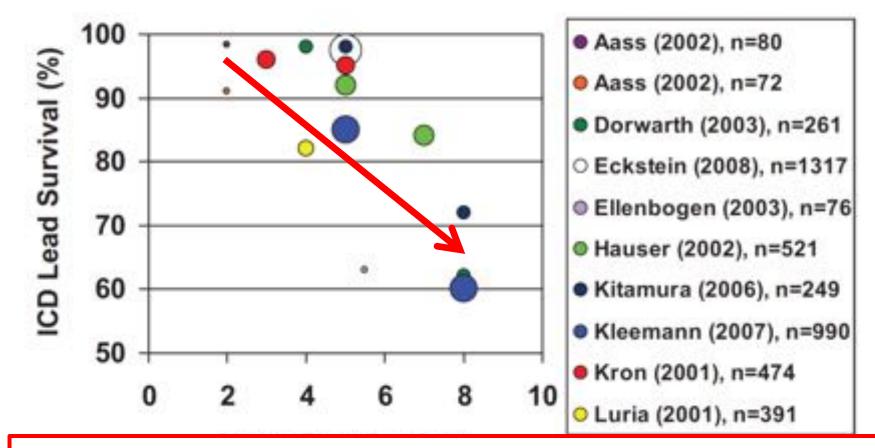
### Thank you for your attention!

## **HF-REF Treatment Algorithm 2016**


#### Treatment for patients with symptomatic HF-REF (NYHA II-IV)

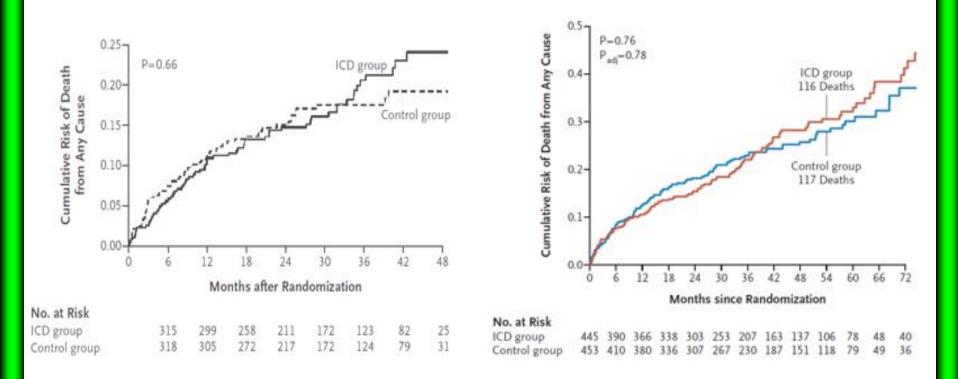





Eur Heart J 2016; 37(27):2129-200

### **Nonpharmacological Treatments in Selected Patients**




Eur Heart J 2016; 37(27):2129-200

### **ICD Lead Performance**



≈ 20-30% ICD transvenous lead fail by 10 yrs

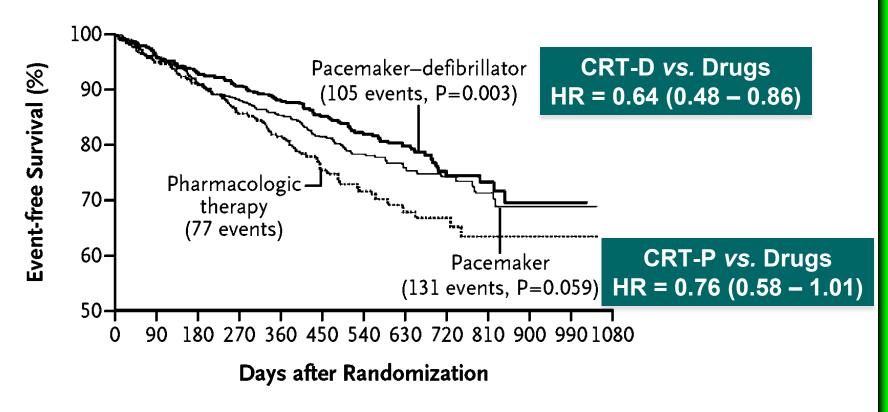
## ICDs and Primary SCD Prevention 2016 ESC Heart Failure GLs



#### DINAMIT N Engl J Med 2004;351:2481-8.

IRIS N Engl J Med 2009;361:1427-36

ICD implantation is not recommended within 40 days of an MI as implantation at this time does not improve prognosis.


Α

Eur Heart J 2016; 37(27):2129-200

Ш

## **COMPANION Trial (2005)**

- 1520 patients with any cardiomyopathy (ICM + NICM)
- □ LVEF  $\leq$  35%, NYHA III IV, QRS  $\geq$  120 msec
- 89% pts. on ACE-I / ARB and 67% pts. on β-blocker

