Triple Trouble : treatment of dyslipidemia with PCSK-9 Inhibitors in patients with diabetes and previous acute coronary syndrome

Gian Piero Perna

Reduction of LDL-C below vs above 50 mg/dL reduces CV risk by a further 10%

*Model covariates: age, BMI, sex, race, region, Hx diabetes, current smoker, Hx hypertension, Hx MI, Hx PCI BMI, body mass index; HR, hazard ratio; Hx, family history of; MI, myocardial infarction; PCI, percutaneous coronary intervention. IMPROVE-IT

"Real Word" Populations with an Unmet Need for LDL-C Lowering

ODYSSEY OUTCOMES & FOURIER Study Designs

ALIROCUMAB	ODYSSEY OUTCOMES	FOURIER	EVOLOCUMAB
Patient population	Patients with recent ACS on <u>maximally tolerated statin</u> ± other LLT LDL-C ≥70 mg/dL or non-HDL-C ≥100 mg/dL or apolipoprotein B ≥80 mg/dL) 18.000 pts (9000 vs 9000)	27.500 Patients with MI , stroke , or PAD and additional risk factors (1 major or 2 minor) + on <u>optimal background lipid therapy</u> (effective statin dose ± ezetimibe) LDL-C ≥70 mg/dL or non-HDL-C ≥100 mg/dL	
Primary End Point	Time to Coronary Heart Disease death, non-fatal myocardial infarction, ischemic stroke, Unstable Angina requiring hospitalization	Time to Cardiovascular Death, non-fatal myocardial infarction, non-fatal stroke, hospitalization for Unstable Angina or coronary revascularization	
LDL-C reduction	Treat-to-target approach Patient started on 75Q2W (~50% LDL-C reduction) up- titration to 150Q2W if LDL-C≥50 mg/dL	Lower-the-better approach with one dose fits all Patients on 140Q2W/420QM ≥60% LDL-C reduction	
Management of Low LDL-C	With down-titration from 150Q2W to 75Q2W if 2 consecutive LDL-C <25mg/dL, or from 75Q2W to placebo if 2 consecutive LDL- C <15 mg/dL	No down-titration or switch to placebo if low LDL-C level	
Baseline LDL-C	86.5mg/dL (median)	91.5mg/dL (median)	
Mean Exposure to Study Drug and Follow-up	Mean 3 years 2-to-5 years follow-up	Mean 2 years 1-to-3.5 years follow-up	

Evolocumab Outcomes Trial: Study Design Overview

D = day; HDL-C = high-density lipoprotein cholesterol; LDL-C = low-density lipoprotein cholesterol;

MI = myocardial infarction; PAD = peripheral artery disease; Q2W = every 2 weeks; Q24W = every 24 weeks; QM = every month; SC =

subcutaneous; W = week.

Sabatine MS, et al. Am Heart J. 2016;173:94-101.

LDL-C was significantly reduced in the evolocumab group (median: 30 mg/dL) including 42% who achieved levels ≤ 25 mg/dL vs < 0.1% in the placebo group

Data shown are median values with 95% confidence intervals in the two arms; ITT. Sabatine MS, et al . *NEJM*. [published online ahead of print March 17, 2017]. doi: 10.1056/NEJMoa1615664

Primary Endpoint: Composite of CV Death, MI, Stroke, Hospitalization for UA, or Coronary Revascularization

HR 0.85 (95% CI 0.79 to 0.92); *P* < 0.001

CV = Cardiovascular; MI = Myocardial infarction; UA = Unstable angina; HR = Hazard ratio Sabatine MS, et al . *NEJM*. [published online ahead of print March 17, 2017]. doi: 10.1056/NEJMoa1615664

Key Secondary Endpoint: Composite of CV Death, MI, or Stroke

HR 0.80 (95% CI 0.73 to 0.88); P < 0.001

CV = Cardiovascular; MI = Myocardial infarction; HR = Hazard ratio Sabatine MS, et al . *NEJM*. [published online ahead of print March 17, 2017]. doi: 10.1056/NEJMoa1615664

Figure 1: Distribution of achieved LDL-cholesterol concentrations at 4 weeks in patients who did not have a primary efficacy or prespecified safety event before the study

Red bars are evolocumab (median 0-8 mmol/L, IQR 0-5-1-2). Blue bars are placebo (median 2-2 mmol/L, IQR 1-9-2-7).

Safety

Exploratory Analysis Pts with LDL-C <0.26 mM (<10 mg/dL) at 4 wks

N=504: Median [IQR] LDL-C 0.18 [0.13-0.23] mM = 7 [5-9] mg/dL

Primary and secondary composite endpoint results were consistent across all key subgroups

		PRIMARY ENDPOINT: 3-yr KM rate (%)				KEY SECONDARY ENDPOINT: 3-yr KM rate (%)					
	Patients	Evo	Pbo	HR (95% CI)	HR (95% CI)	P _{interaction}	Evo	Pbo	HR (95% C	l) HR (95% CI)	P _{interactic}
OVERALL	27564	12.6	14.6	i 🄶 I	0.85 (0.79-0.92)		7.9	9.9	I	0.80 (0.73-0.88)	
Age						0.9					0.79
<65	15310	12.6	14.6	HEH	0.86 (0.78-0.94)		7.3	9.1	⊢∎⊣	0.79 (0.69 -0.90)	
≥65	12254	12.6	14.6	H	0.85 (0.76-0.95)		8.7	10.9	⊢∎⊣	0.81 (0.71 -0.92)	
Sex						0.48					0.44
Female	6769	9.9	12.5	⊢∎→	0.81 (0.69-0.95)		6.5	9.2	⊢∎→	0.74 (0.61 -0.90)	
Male	20795	13.5	15.3	H	0.86 (0.80-0.94)		8.4	10.2	HEH	0.81 (0.73 -0.90)	
Race						0.036					0.048
Caucasian	23458	12.7	14.4	H	0.88 (0.81-0.95)		7.8	9.6	HEH	0.83 (0.75-0.92)	
Non-Caucasian	4106	12.5	16.2		0.70 (0.57-0.86)		9.0	12.4 ⊢		0.64 (0.50-0.81)	
Region						0.15					0.012
North America	4571	15.7	20.8	⊢■→	0.77 (0.66 -0.90)		8.6	13.5 H		0.62 (0.51-0.76)	
Europe	17335	11.9	13.1	H a n	0.91 (0.83 -1.00)		7.6	8.9	⊢ ∎-I	0.90 (0.80-1.01)	
Latin America	1823	14.9	14.3	⊢∎∔₁	0.85 (0.63-1.15)		11.3	10.8	• ----	0.85 (0.58-1.24)	
Acia/Dacific	3835	14.1	13.5		0.73 (0.58-0.91)		9.2	10.1 ^L		0.67 (0.51-0.88)	

Sabatine MS, et al . *NEJM*. [published online ahead of print March 17, 2017]. doi: 10.1056/NEJMoa1615664 (Supplementary Figure S5)

Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial

Marc S Sabatine, Lawrence A Leiter, Stephen D Wiviott, Robert P Giugliano, Prakash Deedwania, Gaetano M De Ferrari, Sabina A Murphy, Julia F Kuder, Ioanna Gouni-Berthold, Basil S Lewis, Yehuda Handelsman, Armando Lira Pineda, Narimon Honarpour, Anthony C Keech, Peter S Sever, Terje R Pedersen

Weeks

Change from Baseline (%)

2.6

Patients with Diabetes at Baseline Patients without Diabetes at Baseline

P<0.0001 HDL-C

Change from Baseline (%)

Patients without Diabetes at Baseline

-47.0

Placebo

Evolocumab

Patients without Diabetes at Baseline

Change from Baseline P<0.0001 P<0.0001 from Baselin Triglyceride-rich lipoproteins -15 -

Primary End-point

Key Secondary End-point

3.6%

3.5%

1.8%

1.7%

CV – Mortality in FOURIER

Mean Follow-up : 2.2y Optimal Medical Therapy Mortality Low Rate Event-drive Trial

CV mortality

		# of CV Deaths			
Trial	Year	More Intensive Rx Arm	Less Intensive Rx Arm	- HR (95% CI)	
PROVE-IT TIMI 22	2004	27	36	0.74 (0.45-1.22)	
A2Z	2004	86	111	0.76 (0.57-1.01)	
TNT	2005	101	127	0.80 (0.61-1.03)	⊢_ ∎
IDEAL	2005	223	218	1.03 (0.85-1.24)	⊢ ∎→
SEARCH	2010	565	572	0.99 (0.88-1.11)	
IMPROVE-IT	2015	538	537	1.00 (0.89-1.13)	
Summary		1540	1601	0.96 (0.90-1.03)	•
				0.2	2 1.0 5.0 More intensive Less intensive therapy better therapy better

1. Cannon CP, et al. *NEJM*. 2004;350:1495-1504. 2. de Lemos JA, *JAMA* 2004;292:1307-1316. 3. LaRosa JC, et al. *NEJM*. 2005;352:1425-1435. 4. Pederson TR, et al. *JAMA*. 2005; 294:2437-2445. 5. Search Collaborative Group. *Lancet* 2010; 376: 1658–69. 6. Cannon CP, et al. *NEJM*. 2015;372:2387-2397. 7. Sabatine MS, et al. American College of Cardiology – 66th Annual Scientific

First Primary End-Point

Conclusion - 1

- Among patients with previous/recent ACS the presence of diabetes, but not prediabetes, was independently associated with a substantially increased risk of cardiovascular morbidity and mortality, despite statin therapy
- PCSK9-I lowered LDL cholesterol and significantly reduced cardiovascular risk with similar efficacy in patients with and without diabetes. However, because of their heightened baseline risk of cardiovascular events, patients with diabetes tended to have a greater absolute risk reduction with PCSK9-I treatment
- Recent guidelines have recommended identifying people with diabetes and established atherosclerotic cardiovascular disease as having an extreme risk requiring more intensive treatment to achieve lower LDL goals (< 55 mg/dl)
- PCSK9-I added to statins are safe , and did not increase the risk of new-onset diabetes, nor did it worsen glycaemia and HbA_{1c}

Conclusion - 2

- The use of PCSK-9 Inhibitors in patients with diabetes and recent or previous ACS might be particularly attractive from a cost- effectiveness standpoint (NNT 60 \rightarrow 32)
- In patients with recent ACS , CV-event risk > 3%/y and LDL-C > 140 mg/dl a PCSK-9I may be considered
- Risk stratification and individualization of therapy among patients with recent or previous ACS are emerging as growing needs in the context of the increasing number of "intensive" therapies
- The "Risk-Score" strategy offers an opportunity to select candidates with the potential for the greatest absolute gains

Effects of ezetimibe by TRAP 2P risk score in IMPROVE-IT

Current Smoking