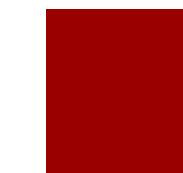


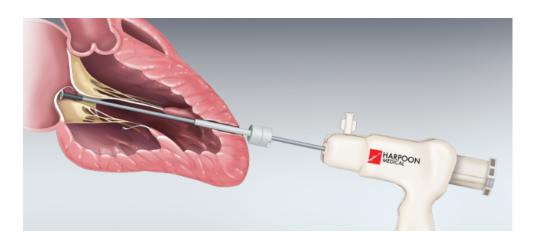
I prefer the 2nd generation beating heart mitral valve repair with E-PTFE chordae

Augusto D'Onofrio

Cardiochirurgia - Padova

Harpoon Mitral Valve Repair System


Hemostatic Introducer to reduce blood loss and improve tactile feedback

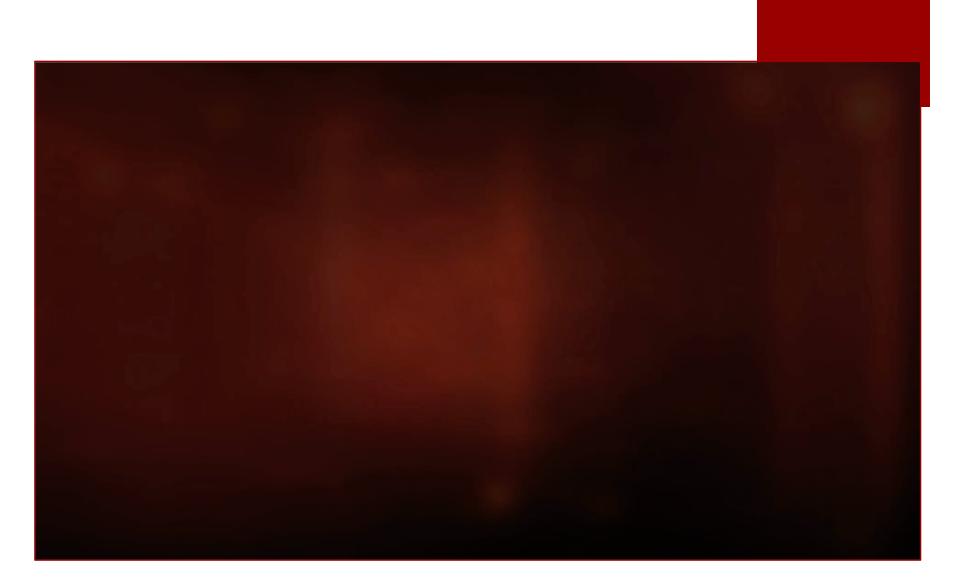

Proprietary Anchor
with an ePTFE suture as the only
element left in the heart

Harpoon Mitral Valve Repair System

- Simple, minimally-invasive, beating-heart, off pump repair
- Echo-guided chordal placement

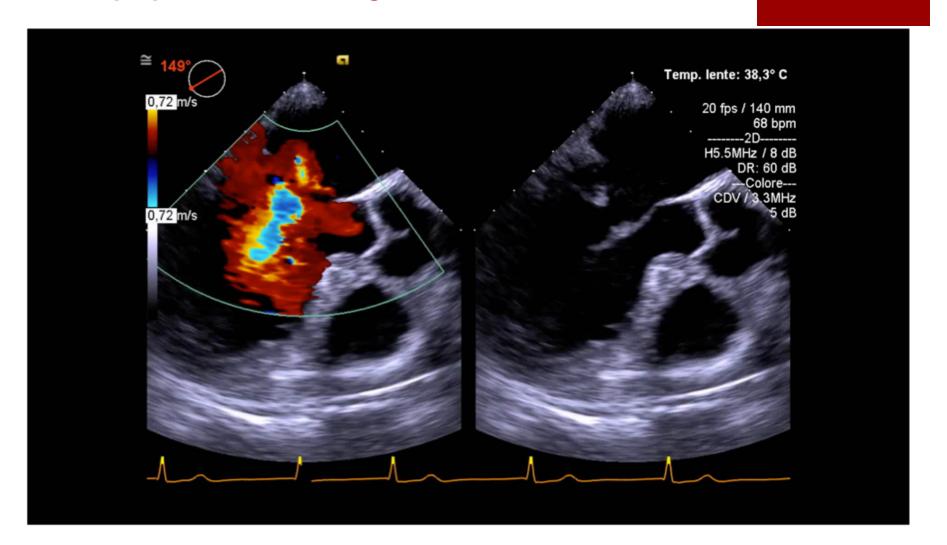
Hemostatic Introducer

Low-Profile
Delivery System
9 Fr shafted instrument



Secure Anchoring

Self-forming ePTFE knot



HARPOON Procedure Key Steps

Delivery System Positioning

Beating-Heart Mitral Valve Repair Using a Novel ePTFE Cordal Implantation Device

A Prospective Trial

James S. Gammie, MD, ^a Krzysztof Bartus, MD, PhD, ^b Andrzej Gackowski, MD, PhD, ^b Michael N. D'Ambra, MD, ^c Piotr Szymanski, MD, PhD, ^d Agata Bilewska, MD, PhD, ^d Mariusz Kusmierczyk, MD, PhD, ^d Bogusław Kapelak, MD, PhD, ^b Jolanta Rzucidło-Resil, MD, ^b Neil Moat, MBBS, ^c Alison Duncan, MBBS, PhD, ^e Rashmi Yadev, MBBS, PhD, ^e Steve Livesey, MBChB, ^f Paul Diprose, MBChB, ^f Gino Gerosa, MD, PhD, ^g Augusto D'Onofrio, MD, ^g Demetrio Pitterello, MD, ^g Paolo Denti, MD, ^h Giovanni La Canna, MD, ^h Michele De Bonis, MD, ^h Ottavio Alfieri, MD, PhD, ^b Judy Hung, MD, ^l Piotr Kolsut, MD, PhD, ^d

89 patients screened

Isolated posterior leaflet (Mainly P2)

30 enrolled

6 sites in 3 countries

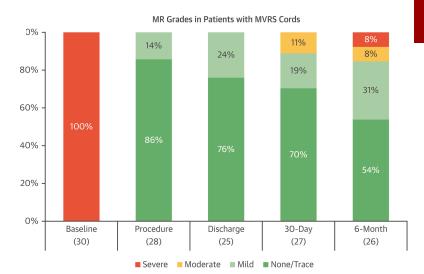
TABLE 1 Baseline Characteristics of the Patients	
Age, yrs	61 ± 13
Males	23 (77)
BMI, kg/m ²	26.2 ± 3.7
NYHA Class, %	
T.	15 (50)
II	10 (33)
III	5 (17)
IV	0 (0)
STS PROM, %	0.69 ± 0.72
EuroSCORE II, %	1.2 ± 1.3
Atrial fibrillation	9 (30)*
Hypertension	22 (73)
Diabetes mellitus	3 (10)
Glomerular filtration rate, ml/min/m ²	79.1 ± 15.5
Cardiac structure and function	
Mean LV ejection fraction, %	69 ± 7
LA diameter, cm	46 ± 7
LV end-diastolic diameter, cm	53 ± 6
LV end-systolic diameter, cm	32 ± 6
sPAP, mm Hg	42 ± 13
Isolated P2 prolapse	28 (93)
Isolated P3 prolapse	1 (3)
P2/P3 prolapse	1 (3)

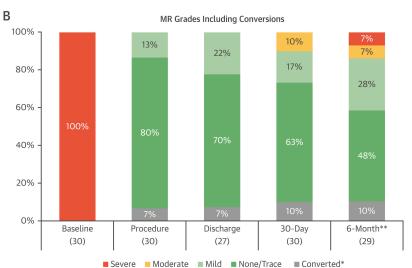
Technical success rate of (28/30), 93%

Mean n°of Chords 3.9±1

Intraoperative blood loss 276±196 ml

Length of stay 6.7±1.6 days


VOL. 71, NO. 1, 2018 ISSN 0735-1097/\$36.00 https://doi.org/10.1016/j.jacc.2017.10.062


Beating-Heart Mitral Valve Repair Using a Novel ePTFE Cordal Implantation Device

A Prospective Trial

James S. Gammie, MD,^a Krzysztof Bartus, MD, PhD,^b Andrzej Gackowski, MD, PhD,^b Michael N. D'Ambra, MD,^c Piotr Szymanski, MD, PhD,^d Agata Bilewska, MD, PhD,^d Mariusz Kusmierczyk, MD, PhD,^d Boguslaw Kapelak, MD, PhD,^b Jolanta Rzucidlo-Resil, MD,^b Neil Moat, MBBS,^a Alison Duncan, MBBS, PhD,^a Rashmi Yadev, MBS, PhD,^b Steve Livesey, MBChB,^f Paul Diprose, MBChB,^f Gino Gerosa, MD, PhD,^a Augusto D'Onofrio, MD,^a Demetrio Pitterello, MD,^b Paolo Denti, MD,^b Giovanni La Canna, MD,^b Michele De Bonis, MD,^b Ottavio Alfieri, MD, PhD,^b Judy Hung, MD,^b Pfotr Kolsut, MD, PhD^d

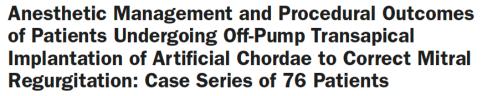
Beating-Heart Mitral Valve Repair Using a Novel ePTFE Cordal Implantation Device

A Prospective Trial

James S. Gammie, MD,* Krzysztof Bartus, MD, Pr.D,* Andrzej Gackowski, MD, Pr.D,* Michael N. D'Ambra, MD,¢ Plotr Szymanski, MD, Pr.D,* Agata Bilewska, MD, Pr.D,* Mariusz Kusmierczyk, MD, Pr.D,* de Bogusław Kapelak, MD, Pr.D,* Jolanta Rzucidło-Resil, MD,* Neil Moat, MBBS,* Alison Duncan, MBBS, Pr.D,* Rashmi Yadev, MBBS, Pr.D,* Steve Livesey, MBC:nB,* Paul Diprose, MBC:nB,* Gino Gerosa, MD, Pr.D,* Augusto D'Onofrio, MD,* Demetrio Pitterello, MD,* Paolo Dentos, MD,* Oranni La Canna, MD,* Michele De Bonis, MD,* Ottavio Alfieri, MD,* PuD,* Judy Hung, MD,* Piotr Kolsut, MD, Pr.D*

TABLE 2 Echocardiographic Results

	Screening	30 Day	6 Month	p Value
LVEDD, mm	$\textbf{53} \pm \textbf{6}$	$49\pm5^*$	$48\pm6^{*}$	< 0.001
LVESD, mm	$\textbf{33} \pm \textbf{6}$	$\textbf{33} \pm \textbf{5}$	$\textbf{32} \pm \textbf{5}$	0.31
LA volume, ml	106 ± 36	72 \pm 26*	$69 \pm 24 ^{*}$	< 0.001
LV EDV, ml	$\textbf{161} \pm \textbf{36}$	$123\pm28^{\color{red}*}$	$122\pm30^{*}$	< 0.001
LV ESV, ml	$\textbf{52} \pm \textbf{20}$	49 ± 13	45 ± 14	< 0.001
LVEF, %	69 ± 7	$\textbf{61} \pm \textbf{6*}$	66 ± 7	< 0.001
MV annular diameter, mm	$\textbf{34.7} \pm \textbf{5.8}$	$\textbf{31.2} \pm \textbf{4.0}$	$\textbf{28.2} \pm \textbf{5.1*}$	< 0.001
Mitral annular area, cm ²	10.0 ± 2.7	$\textbf{8.4} \pm \textbf{2.0} \textbf{\dagger}$	$\textbf{6.9} \pm \textbf{2.0*}$	< 0.001
Mean MV gradient, mm Hg	NA	1.3 ± 0.5	1.5 ± 0.6	0.30


Values are mean \pm SD. *p < 0.001 vs. baseline. †p < 0.05 compared to baseline.

LA = left atrial; LV EDV = left ventricular end-diastolic volume; LV ESV = left ventricular end-systolic volume; LVEDD = left ventricular end-diastolic dimension; LVESD = left ventricular end-systolic dimension; MV=mitral valve.

Potential benefits over 1° generation device

Single entry in the LV-No «In & Out»

Reduced blood loss

www.anesthesia-analgesia.org

March 2018 • Volume 126 • Number 3

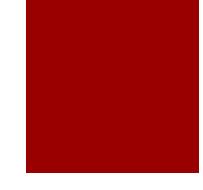
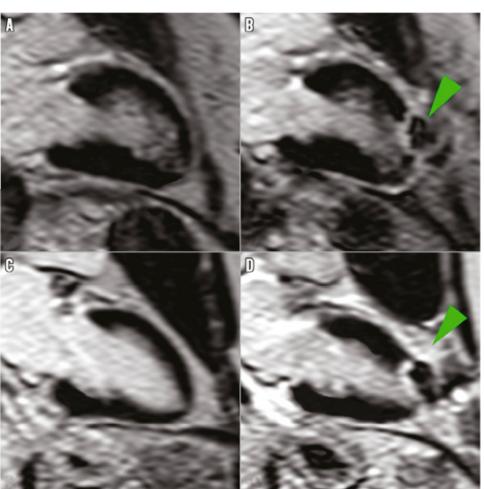

Robertas Stasys Samalavicius, MD, PhD,* Ieva Norkiene, MD, PhD,† Agne Drasutiene, MD,‡ Arturas Lipnevicius, MD,‡ Vilius Janusauskas, MD, PhD,‡ Karolis Urbonas, MD,* Diana Zakarkaite, MD, PhD,‡ Audrius Aidietis, MD, PhD,‡ and Kestutis Rucinskas, MD, PhD,‡

Table 3. Perioperative Data (n = 76)	
Intraoperative variables Duration of surgery (min), median (IQR)	120 (115–145)
Blood loss during surgery (mL), median (IQR)	500 (350–700)
mL, n (%) Retransfusion of washed erythrocytes (mL), median (IQR)	250 (180–395)
Retransfusion of washed erythrocytes, n (%) Intraoperative blood loss in patients who had retransfusion (mL), median (IQR)	46 (61) 600 (440–930)
Intraoperative blood loss, in no retransfused patients (mL), median (IQR)	400 (250–500)

Smaller entry site (9 Fr.)


Reduced LV scar

Myocardial injury following transcatheter aortic valve implantation: insights from delayed-enhancement cardiovascular magnetic resonance

Henrique B. Ribeiro, MD; Éric Larose, DVM, MD; Maria de la Paz Ricapito, MD; Florent Le Ven, MD; Luis Nombela-Franco, MD; Marina Urena, MD; Ricardo Allende, MD; Ignacio Amat-Santos, MD; Abdellaziz Dahou, MD; Romain Capoulade, PhD; Marie-Annick Clavel, DVM, PhD; Siamak Mohammadi, MD; Jean-Michel Paradis, MD; Robert De Larochellière, MD; Daniel Doyle, MD; Éric Dumont, MD; Philippe Pibarot, DVM, PhD; Josep Rodés-Cabau*, MD

Quebec Heart & Lung Institute, Laval University, Quebec City, Quebec, Canada

Conclusions

- Harpoon enables echo-guided beating heart anchoring of e-PTFE artificial chords
- It is a truly micro-invasive procedure (9 Fr. Delivery system, beating heart, off-pump, advanced imaging)
- Procedural traumatism and bleeding are limited
- It allows for real time confirmation of the intra-operative results
- It does not preclude future reinterventions

