GIORNATE CARDIOLOGICHE TORINES

president Mauro Rinaldi

CO-PRESIDENTS SEBASTIANO MARRA FIORENZO GAITA

president Mauro Rinaldi

CO-PRESIDENTS SEBASTIANO MARRA FIORENZO GAITA

UNIVERSITÀ DEGLI STUDI DI TORINO

Sala ELEONORA

CONTROVERSIES IN CARDIOLOGY

8:30 WORKSHOP OPENING Chairpersons: Carla Giustetto, Mauro Rinaldi

8:45 20 years of Cardiology: what have we learned? What are the challenges ahead? MAURO GIORGI

Friday October 26th Morning

BESIDES EJECTION FRACTION: THE ROLE OF ECHOCARDIOGRAPHY TURIN,

Biomarkers as early cardiotoxicity markers
 David Conductors

 Besides ejection fraction: the role of echocardiography MAURO GIORGI

10:30 Target therapy and cardiotoxicity

- How the survival curve has changed over the years PATRIZIA PREGNO
- Management of the peripheral

PROGRAM

October

25th-27th

Starhotels Majestic

2018

Mauro GIORGI S.C. CARDIOLOGIA U - OSP. MOLINETTE CITTA' della SALUTE e della SCIENZA di TORINO

A REAL PROPERTY AND A REAL

In general, the cardiovascular complications of cancer therapy can be divided into <u>nine main categories</u>, which are discussed in this document:

- myocardial dysfunction and heart failure (HF);
- coronary artery disease (CAD);
- valvular disease;
- arrhythmias, especially those induced by QT-prolonging drugs;
- arterial hypertension;
- thromboembolic disease;
- peripheral vascular disease and stroke;
- pulmonary hypertension and
- pericardial complications.

LA DIAGNOSI DI CARDIOTOSSICITÀ

La cardiotox può interessare tutte le strutture cardiache (miocardio, pericardio, coronarie, tessuto di conduzione, valvole)

- ECG basale
- ECG HOLTER LOOP RECORDER
- TEST ERGOMETRICO
- SCINTIGRAFIA MIOCARDICA BASALE e SFORZO
- CORONAROGRAFIA
- RMN / MRI
- MARKERS BIOCHIMICI (Tnl BNP)
- ECOCARDIOGRAFIA

ECOCARDIOGRAFIA

RUOLO dell'ECOCARDIOGRAFIA

- Al giorno d'oggi è quasi inimmaginabile fare una diagnosi di una cardiopatia senza ricorrere all'echo
- Capacità di misurare parametri strutturali e funzionali del cuore
- L'Echo è l'esame cardine nella valutazione dei Pts pre, durante e dopo terapie antitumorali
- Ampia disponibilità, versatilità, facile ripetibilità, trasportabilità, sicurezza (assenza di radiazioni, IRC)

Figure 2. Algorithm for continuation and discontinuation of trastuzumab based on LVEF assessments.

Figure 1. Algorithm for the management of cardiotoxicity in patients receiving anthracyclines.

clinical practice guidelines

Annals of Oncobgy 23 (Supplement 7): vii155-vii166, 2012 doi:10.1093/annonc/mds293

Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines[†]

G. Curigliano¹, D. Cardinale², T. Suter³, G. Plataniotis⁴, E. de Azambuja⁵, M. T. Sandri⁶, C. Criscitiello¹, A. Goldhirsch¹, C. Cipolla² & F. Roila⁷, on behalf of the ESMO Guidelines Working Group^{*}

La <u>cardiotossicità</u> è caratterizzata da almeno uno tra: -sintomi di scompenso cardiaco -segni clinici di scompenso cardiaco (es. T3 o tachicardia) -Riduzione d EF di almeno 5% sotto i 55% con sintomi o segni " scompenso -Riduzione d EF del 10% sotto i 55% senza segni o sintomi associati

Come deve essere valutata la frazione d'eiezione?

Editorial

Ejection fraction: a measure of desperation?

Charlotte H Manisty, Darrel P Francis

Author affiliations +

http://dx.doi.org/10.1136/hrt.2007.118976

EF - m-MODE: TEICHOLZ

2D SIMPSON RULE

Opacificazione VS (Sonovue)

WALL MOTION SCORE INDEX

Settore Operativo Formazione 2017-2019 Responsabile: Mauro GIORGI

1. Normal or Hyperkinetic 2. Hypokinetic (reduced thickening) 3. Akinetic (absent or negligible thickening 4. Dyskinetic (systolic thinning or stretching)

WMSI E MORTALITÀ

Settore Operativo Formazione 2017-2019 Responsabile: Mauro GIORGI

Quali sono i limiti nella valutazione dell'EF?

Left Ventricular Ejection Fraction

VARIABILITÀ dei "CUT OFF" di EF

	Normal	Mild	Moderate	Severe
2015	>52	51-41	40-30	<30
2005	>55	54-45	44-30	<30

LV Ejection Fraction

VARIABILITÀ dei "CUT OFF" di EF

Male

	Normal	Mildly	Moderately	Severely
LVEF	52-72	41-51	30-40	<30

Female

	Normal	Mildly	Moderately	Severely
LVEF	54-74	41-53	30-40	<30

Settore Operativo Formazione 2017-2019 Responsabile: Mauro GIORGI

LIMITI dell'ECOCARDIOGRAFIA

3D echocardiography for evaluating the left ventricle: key points

- Left ventricular (LV) morphology and function most common echocardiography request
- M mode and 2D echocardiography make incorrect geometric assumptions about the LV
- Inaccurate and poor reproducibility of M mode/2D analysis
- 3D echocardiography makes no geometric assumptions
 3D sees the LV "as it is"
- 3D measures endocardial position at >700 points
- 3D echocardiography has excellent correlation with cardiac magnetic resonance (CMR) for volume, mass, and ejection fraction
- 3D reproducibility comparable with CMR

Eco 3D vs MRI in pz con/senza anomalie del wall motion: Volumi e Frazione di Eiezione

2

Pouleur AC et al, Heart 2008;94:1050-1057

Journal of the American College of Cardiology © 2013 by the American College of Cardiology Foundation Published by Elsevier Inc.

Cardiac Imaging

Reproducibility of Echocardiographic Techniques for Sequential Assessment of Left Ventricular Ejection Fraction and Volumes

Application to Patients Undergoing Cancer Chemotherapy

Paaladinesh Thavendiranathan, MD, MSC, Andrew D. Grant, MD, Tomoko Negishi, MD, Juan Carlos Plana, MD, Zoran B. Popović, MD, PHD, Thomas H. Marwick, MD, PHD, MPH *Cleveland*, *Ohio*

Confronto tra 2D-biplano, 2D-biplano/contrasto, Triplano, Triplano/contrasto, 3D, 3D/contrasto

Accurate calculation of LVEF should be done with the best method available in the echo come laboratory (ideally 3DE)

Tonow-up. (J Am Con Cardiol 2013;61:77-84) © 2013 by the American Conege of Cardiology Foundation

Table 2	Interobserver a	and Intraobserver Va	riability and Minim	al Detectable Chan	ge for EF Measuren	ents by All 6 1	Fechniques
		Bi	Bi + Co	Tri	Tri + Co	3D	3D + Co
Intraobserve	r	0.033*	0.035*	0.038*	0.037*	0.017	0.026
$\operatorname{Min} \Delta \operatorname{detect}$	table	0.090	0.098	0.104	0.102	0.048	0.072
Interobserve	r	0.040	0.051*	0.049*	0.048*	0.027	0.038
$\operatorname{Min} \Delta \operatorname{detect}$	table	0.111	0.142	0.135	0.133	0.075	0.100
Interobserve	r test-retest	0.047*	0.055*	0.058*	0.069*	0.022	0.042*
$\operatorname{Min}\Delta\operatorname{detec}$	table	0.013	0.152	0.162	0.192	0.060	0.115

Noncontrast 3D had the lowest intraobserver and interobserver test-retest observer variability and the smallest minimal detectable change. An ejection fraction (L) 01/033 corresponds to 3.3%. *p < 0.01 t test compared with noncontrast 3D.

Bi = biplane Simpson's; BP + Co = biplane Simpson's with contrast; Tri = triplane; Tri + Co = triplane + contrast; 3D = 3-dimensional; 3D + Co = 3-dimensional with contrast.

EF e PITFALLS

- Ogni Pt è caratterizzato da condizioni funzionali ed emodinamiche diverse
- L'EF non riflette accuratamente lo stato contrattile del miocardio, essendo influenzata dalle condizioni di carico (-->annotare FC e PAO durante gli esami!)
- L'EF non sempre riflette la portata cardiaca, che può:
 - essere conservata in Pts con bassa EF, ma VS di volumetria aumentata
 - essere ridotta in Pts con EF normale, ma piccola volumetria ventricolare / ipertrofia o insufficienza mitralica severa o compromissione della funzione diastolica

VALUTAZIONE dell'EF: LIMITI

- ↓ EF = perdita di cardiomiociti (danno irreversibile)
- EF normale anche con alterazioni cinesi segmentaria
- EF = indice tardivo, poco sensibile e poco specifico, con bassa accuratezza diagnostica e scarso potere predittivo

OBIETTIVO DEL CARDIONCOLOGO:

identificazione precoce dei <u>Pts a rischio</u> di sviluppare una disfunzione VS → personalizzazione del programma terapeutico cht e cardioprotezione

(= identificazione del danno in fase pre-clinica)

Esistono altre tecnologie per evidenziare una CTX, prima della riduzione dell'EF?

MAPSE = "Mitral Annular Plane Systolic Excursion"

DOPPLER TISSUTALE

FUNZIONE DIASTOLICA

Index of Myocardial Performance (IMP)

Valutazione <u>sisto-diastolica</u>: durata del periodo di contrazione isovolumetrica (IVCT) e di rilasciamento isovolumetrico (IVRT) su eiezione ao (ET) = <u>TEI Index</u>

Temporal Changes in Standard and Tissue Doppler Imaging Echocardiographic Parameters After Anthracycline Chemotherapy in Women With Breast Cancer

Marzia Lotrionte, MD^a, Elena Cavarretta, MD, PhD^b, Antonio Abbate, MD, PhD^e, Eleonora Mezzaroma, PhD^e, Eugenia De Marco, MD^a, Silvia Di Persio, RN^a, Francesco Loperfido, MD^a, Giuseppe Biondi-Zoccai, MD^{b,*}, Giacomo Frati, MD^{b,d}, and Giovanni Palazzoni, MD, PhD^e

> Anthracyclines are established cardiotoxic agents; however, the exact extent and time course of such cardiotoxicity has not been appraised in detail. We aimed to exploit serial measurements of standard and tissue Doppler imaging (TDI) echocardiographic parameters collected in a prospective clinical trial to clarify the outlook of cardiac function during and long after anthracycline chemotherapy. Women enrolled in a randomized trial focusing on liposomal doxorubicin-based chemotherapy for breast cancer and providing ≥4 separate echocardiographic assessments were included. Repeat-measure nonparametric analyses were used to appraise changes over time in the standard and tissue Doppler imaging echocardiographic parameters. A total of 39 patients with serial imaging evaluations were enrolled. Significant temporal changes were found for the left ventricular ejection fraction and diastolic parameters, despite different temporal trends. Specifically, the left ventricular ejection fraction exhibited a V-shaped trend, decreasing initially from 63% to 61% but then recovering to 64% (p <0.001), with a similar trend in the TDI E/Em ratio (p = 0.011). In contrast, persistent impairments typical of an L-shaped trend were found for the E wave (p = 0.006), TDI lateral Em wave (p = 0.001), and TDI septal Em wave (p = 0.001). In conclusion, subclinical temporal changes in the standard and TDI echocardiographic parameters after anthracycline chemotherapy showed a distinctive pattern of transient impairment followed by full recovery of the left ventricular ejection fraction versus a persistent impairment of the diastolic parameters, which must be taken into account in the everyday treatment of such patients. © 2013 Elsevier Inc. All rights reserved. (Am J Cardiol 2013;112:1005-1012)

39 ♀, liposomal-doxo, 4 f.u.: fine, 6, 12, 18-24 m **EF e funzione diastolica**

Evaluation of early subclinical cardiotoxicity of chemotherapy in breast cancer

Hayri Aher, Ozan Balakan', Silleyman Ercan', Musa Çakıcr, Fethi Yavuz', Vedat Davutoğlu-

Clinic of Cardiology, 25 Aralik State Hospital, Gaziantep-*Purkey* Department of Oncology, Faculty of Medicine, Siltçii İmam University: Kahramanmaraş-*Turkey* Department of Cardiology, Faculty of Medicine, Gaziantep University: Gaziantep-*Turkey* Department of Cardiology, Faculty of Medicine, Adiyaman University: Adiyaman-*Turkey* Clinic of Cardiology, Dr. Ersin Arstan State Hospital, Gaziantep-*Turkey*

<u>Tissue Doppler imaging</u> may be more sensitive than ECG, conventional ECHO and Doppler for determining the subclinical cardiac damage.

methods: Fity-one patients consecutively enrolled to this prospective conort study. An patients were diagnosed as breast cancer at oncology hospital in University of Gaziantep. Before chemotherapy, all of the patients underwent to detailed ECG and echocardiography (ECHO) examinations. After 6 months, detailed ECG and ECHO examinations were repeated and compared with baseline values. Statistical analysis was performed using Shapiro-Wilk tests, Student t-test and Spearman correlation test.

Results: The average age of patients was 51 and one was male. Statistically significant decrease in ejection fraction was found after treatment (62.3%±3.3 and 59.9%±5.9, p=0.002). Evaluation of diastolic parameters; significant increase in the transmitral A flow velocity and significant decrease of E/A ratio were observed on Doppler ECHO analysis (77.4±19.1 cm/sec versus 86±18 cm/sec, p<0.001; 1.01±0.3 versus 0.9±0.2, p=0.03, respectively). On tissue Doppler analysis we observed that significant reduction in the value of E' and significantly increase E/E' ratio were present (12.5±3.6 cm/sec versus 10.7±2.9 cm/sec, p=0.001; 6.6±2.9 versus 7.7±3.3, p=0.04, respectively).

Conclusion: Chemotherapy has detrimental subclinical effect on both of systolic and diastolic function in early six months period despite the prescription of lower dosage of chemotherapy than well-known cardiac safety dosage limits. Tissue Doppler imaging may be more sensitive than ECG, conventional ECHO and Doppler for determining the subclinical cardiac damage. (*Anadolu Kardiyol Derg 2015; 15(0): 000-000*) **Key words**: breast cancer, chemotherapy, echocardiography, tissue Doppler imaging, cardiotoxicity

Nelle ultime Linee Guida si dà molta rilevanza allo STRAIN

Il cuore: i fasci muscolari

Le FIBRE MIOCARDICHE

Subendocardio: longitudinali

Midwall: circonferenziali

Subepicardio: longitudinali (radiali)

L'EF valuta solo l'accorciamento radiale, ma l'accorciamento longitudinale contribuisce al 60% della contrazione !

SPECKLE TRACKING

Lo **speckle** è una nuova metodica in grado di valutare lo strain tramite un'acquisizione standard 2D

• The random distribution of the speckles ensures that each region of the myocardium has an unique pattern, a fingerprint.

•The speckles follow the motion of the myocardium so when the myocardium moves from one frame to the next, the position of this fingerprint will shift slightly, remaining fairly constant.

•Thus, if a region (*kernel*) is defined in one frame, a search algorithm will be able to recognise the lie sized and shaped area with the most similar speckle pattern in the next frame, within a defined search area and hence, to find the new position of the kernel

2D STRAIN: AFI

((I.

2D STRAIN: AFI - BULL'S EYE

GLPS Global Longitudinal Peak Systolic

V.N. < -18%

K mammella: PRE / POST CT-RT

J Cardiovasc Thorac Res, 2017, 9 (1), 29-34 doi: 10.15171/jcvtr.2017.04 http://journals.tbzmed.ac.ir/jcvtr

Original Article

Two-dimensional strain echocardiography for detection of cardiotoxicity in breast cancer patients undergoing chemotherapy

Mehrnoush Toufan¹, Leili Pourafkari^{1,2}, Leila Ghahremani Nasab¹, Ali Esfahani³, Zohreh Sanaat³, Alireza Nikanfar³, Nader D Nader^{2*}

¹Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ²Department of Anesthesiology, University at Buffalo, Buffalo, NY, USA ³Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Figure 2. Two-dimensional strain echocardiography values at before and after chemotherapy.

Radial strain, Longitudinal strain, Circumferential strain and Area strain.

CIRCONFERENZIALE

2

4D STRAIN

Study	Echocar- diographi method	c Cancer type	n	Age, yrs	Female, %	Treatment	Echocardiography timing	Pre-echo	Post-echo	Cardiotoxicity Rate (%)	Thresholds for Toxicity Prediction	Vendor, Reproducibility
Mornos <i>et al.</i> (2013) ²³⁴	STE	Breast lymphoma, ALL, AML, osteosarcoma	74 & 37 controls	51 ±11	58	Anthracyclines	Pre, post, and 6, 12, 24 and 52 weeks	GLS -21.2 ± 2.5% GRS 47.8 ± 5.3%	GLS -19.0 ± 2.4% GRS 41.1 ± 5.4% (6 weeks)	13	ΔGLS 2.8% (13.1% relative), sensitivity 79% and specificity 73% at 6 weeks for toxicity at 24 -52 weeks	GE, intraobserver ICC for GLS 0.95, interobserver 0.91
Negishi <i>et al.</i> (2013) ¹⁵⁵	STE	Breast	81	50 ± 11	100	Trastuzumab, doxorubicin 46% RT 62%	Pre-trastuzumab, and 6 and 12 months later	GLS -20.7 \pm 2.6% GLSR -1.17 \pm 0.24/s GLSR-E 1.36 \pm 0.28/s	GLS -18.3 \pm 2.1% GLSR -1.00 \pm 0.15/s GLSR-E 1.20 \pm 0.28/s (at 6 months in patients who later had toxicity)	30 5	GLS change ≥11% between pre- treatment and 6 months, sensitivity 65%, spec 95% or absolute GLS >-20.5 at 6 months, sensitivity 96%, spec 66% for toxicity at 12 months	GE, intraobserver ICC (95% CI) for GLS 0.85 (0.54%- 0.96%), GSLR 0.91 (0.70-0.98/s), GLSR-E 0.90 (0.66-0.97/s), Interobserver 0.71 (0.23%-0.92%), 0.85 (0.28-0.97/s), 0.87 (0.56-0.97/s)
Baratta <i>et al.</i> (2013) ²³⁵	STE	Breast	36	47 ± 16	58	Doxorubicin 58% trastuzumab 22%	Pre- and 2,3,4, and 6 months after start of therapy	GLS -20.3 \pm 2.7% GRS 53.1 \pm 4%	GLS -18.9 ± 2.5% (3 months) GRS 50 ± 3.9% (4 months	3 19.4	GLS fall \ge 15% at 3 months, sensitivity 86%, spec 86%. GRS fall \ge 10% at 4 months, sensitivity 86% spec 69%	GE, mean (SD) absolute difference inter/ intraobserver GLS 0.6 (1.4%)/0.2 (1/ 1%), GRS 3.4 (7.1%)/3.2 (6.6%)
Sawaya et al. (2012) ¹⁶⁰	STE	Breast	81	50 ± 10	100	Doxorubicin, epirubicin, trastuzumab, RT 60%	Pre-anthracycline and at 3, 6, 9, 12, and 15 months	GLS -21 ± 2% GRS 53 ± 15% GCS -18 ± 4%	GLS -19 ± 2% GRS 50 ± 17% GCS -16 ± 4% at 3 months	32	Absolute GLS < -19% at 3 months, sensitivity 74%, spec 73% for subsequent toxicity	GE, same variability as in previous study (153)
Sawaya <i>et al.</i> (2011) ¹⁵³	STE	Breast	43	49 ± 10	100	Doxorubicin, epirubicin, trastuzumab, RT 11.6%	Pre-anthracycline and at 3 and 6 months	GLS -20.5 \pm 2.2% GCS 18 \pm 4%	GLS -19.3 \pm 2.4% GCS 15 \pm 4%	21	GLS fall > 10% at 3 months, sensitivity 78%, spec 79% for toxicity at 6 months	GE, intraobserver as absolute mean error (SD) GLS -0.14 (1.1%), interobserver 0.5 (1.5%)
Fallah-Rad <i>et al.</i> (2011) ¹⁵⁶	STE	Breast	42	47 ± 9	100	Epirubicin, doxorubicin, trastuzumab, RT 98%	Pre-anthracycline, Pre-trastuzumab and at 3, 6, 9, and 12 months	GLS -19.8 ± 1.8% GLS 41.4 ± 15.2%	GLS -16.4 ± 1.1% GRS 34.5 ± 15.2% (3 months into trastuzumab)	24	Absolute GLS fall of 2.0%, sensitivity 79%, spec 82%. Absolute GRS fall of 0.8%, sensitivity 86%, spec 81% for subsequent toxicity	GE, intraobserver as ICC (COV) GLS 0.94 (3.5%), GRS 0.91 (3.2%). Interobserver 0.90 (5.2%), 0.82 (5.4%)
Hare <i>et al.</i> (2009) ¹⁶²	TDI and STE	Breast	35	51 ± 8	100	Doxorubicin, epirubicin, trastuzumab, RT 77%	Pre- and/or post- anthracycline and at 3-month	STE GLSR -1.30 ± 0.21/s STE RSR 2.02 ± 0.61/s	$\begin{array}{l} \text{STE GLSR -1.24} \pm \\ \text{0.18/s} (\text{by 3} \\ \text{months}) \text{ STE RSR} \\ \text{1.75} \pm \text{0.41/s} (\text{by} \end{array}$	14	A >1 SD drop in GLSR (toxicity at mean follow-up of 22 ± 6 months)	GE, intra/ interobserver as ICC for 2D GLS 0.94/0.91, GLSR

Table 4 Clinical studies using STE-derived deformation indices during or early after cancer treatment

Left Ventricular Endocardial Dysfunction in Patients with Preserved Ejection Fraction after Receiving Anthracycline

Tatsuya Miyoshi, M.D.,* Hidekazu Tanaka, M.D., Ph.D.,* Akihiro Kaneko, M.D., Ph.D.,* Kazuhiro Tatsumi, M.D., Ph.D.,* Kensuke Matsumoto, M.D.,* Hironobu Minami, M.D., D.Med.Sci.,† Hiroya Kawai, M.D., Ph.D.,* and Ken-ichi Hirata, M.D., Ph.D.*

*Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; and †Division of Medical Oncology and Hematology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan

Background: Anthracycline chemotherapy generates progressive dose-dependent left ventricular (LV) dysfunction associated with a poor prognosis. Early detection of minor LV myocardial dysfunction caused by the cardiotoxicity of anthracycline is thus important for predicting global LV dysfunction. Methods: Fifty patients with preserved ejection fraction (all ≥55%) after receiving anthracycline chemotherapy were recruited for this study. Two-dimensional speckle tracking was used to assess global radial and circumferential strains from mid-LV short-axis views and global longitudinal strain from the apical four- and two-chamber view as peak global strain curves. Three-dimensional (3D) radial, circumferential, and longitudinal myocardial function was guantified as a peak global strain curve using 3D speckle tracking from all 16 LV segments. 3D speckle tracking imaging was used to evaluate LV endocardial area change ratio (area strain) quantified as peak global area strain curve (3D-GAS) to determine LV endocardial function. Twenty age-, gender-, and EF-matched normal volunteers were studied for comparisons. Results: Only 3D-GAS and peak 3D global circumferential strains of the anthracycline group were significantly worse than those of the control group (-43.3 \pm 3.1 vs. -45.8 \pm 4.3% and $-31.6 \pm 3.5\%$ vs. $-34.4 \pm 4.2\%$, respectively; P = 0.008, P = 0.004) even though global LV systolic and diastolic functions were similar. 3D-GAS correlated significantly with the cumulative doxorubicin dose (r = 0.316, P = 0.026). It was noteworthy that multivariate analysis showed only 3D-GAS (β = 0.323, P = 0.025) was independently associated with cumulative doxorubicin dose. Conclusions: Three-dimensional speckle tracking area strain was found useful for early detection of minor LV endocardial dysfunction associated with the use of anthracycline, and may thus prove to be clinically useful for predicting global LV dysfunction. (Echocardiography 2014;31:848–857)

Available online at www.sciencedirect.com

ScienceDirect

www.onlinepcd.com

Cardio-Oncology: Role of Echocardiography

Hector R. Villarraga*, Joerg Herrmann, Vuyisile T. Nkomo

Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States

ARTICLEINFO

Keywords: Cardio-oncology Strain Radiotherapy Breast cancer Lymphoma

ABSTRACT

Current therapies for cancer have improved life expectancy of patients. Breast cancer and lymphoma survivors in up to 26% of cases can develop complications as a consequence of the chemotherapeutic and radiotherapeutic treatments. Echocardiography is a noninvasive method that can in all stages of cancer treatment perform a comprehensive evaluation and detect coronary, myocardial, valve and pericardial disease complications secondary to the therapeutic regimen used (radiotherapy and/or chemotherapy). Three-dimensional echocardiography derived left ventricular ejection fraction (LVEF) has an excellent correlation with cardiac magnetic resonance imaging and can be used to monitor LVEF; 2-dimensional speckle tracking echocardiography (2D-STE) derived strain and strain rate can detect changes in myocardial mechanics before changes in LVEF occur and can predict a future decrease in ejection fraction to less than 50% or of greater than 10% indicative of cardiotoxicity. Echocardiography should be used as the method of choice to evaluate serial changes in heart function, detect late side effects of treatment, and to identify patients at risk of a future decrease in LVEF.

© 2014 Elsevier Inc. All rights reserved.

Modified from: Xu Y, Hermann J, Pellikka PA, Ansell SM, Cha S, Villarraga HR. Can early changes in 2-dimensional speckle tracking echocardiography predict a future decrease in left ventricular ejection fraction in lymphoma patients undergoing anthracycline chemotherapy? JASE. 2013; 26:B52

Journal of the American College of Cardiology © 2014 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 63, No. 25, 2014 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2014.01.073

CrossMark

STATE-OF-THE-ART PAPERS

A Systematic Review

Paaladinesh Thavendiranathan, MD,* Frédéric Poulin, MD,* Ki-Dong Lim, MD,*

Miglior predittore CTX = Global Longitudinal Strain S.T.: ↓10-15%

small trials in the research setting. In this systematic review of the current literature, we describe echocardiographic myocardial deformation parameters in 1,504 patients during or after cancer chemotherapy for 3 clinically-relevant scenarios. The systematic review was performed following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines using the EMBASE (1974 to November 2013) and MEDLINE (1946 to November 2013) databases. All studies of early myocardial changes with chemotherapy demonstrate that alterations of myocardial deformation precede significant change in left ventricular ejection fraction (LVEF). Using tissue Doppler-based strain imaging, peak systolic longitudinal strain rate has most consistently detected early myocardial changes during therapy, whereas with speckle tracking echocardiography (STE), peak systolic global longitudinal strain (GLS) appears to be the best measure. A 10% to 15% early reduction in GLS by STE during therapy appears to be the most useful parameter for the prediction of cardiotoxicity, defined as a drop in LVEF or heart failure. In late survivors of cancer, measures of global radial and circumferential strain are consistently abnormal, even in the context of normal LVEF, but their clinical value in predicting subsequent ventricular dysfunction or heart failure has not been explored. Thus, this systematic review confirms the value of echocardiographic myocardial deformation parameters for the early detection of myocardial changes and prediction of cardiotoxicity in patients receiving cancer therapy. (J Am Coll Cardiol 2014;63:2751-68) © 2014 by the American College of Cardiology Foundation

STRAIN CUT-OFF for INTERVENDORS

Table 1 – Values of strain and systolic strain rate (S and SRs) with standard deviation (SD).							
	Strain %	Longitudinal SRs s ⁻¹	Circumferential Strain %	Circumferential SRs s ⁻¹	Radial Strain	Radial SRs s ⁻¹	
GE ⁴⁰	-18.6 ± 5.1		-22.9 ± 4.4		54.6 ± 12.6		
VVI ³⁶	-17.3 ± 2.5	-1.0 ± 0.1	-21.9 ± 4.0	1.3 ± 0.3	44.8 ± 21.7	2.3 ± 0.7	
TOMTEC ³⁸	-16.1 ± 4.9		-22.3 ± 7.4		30.4 ± 13.5		
(30FPS)							
Toshiba ⁴¹	-19.9 ± 2.4		-30.5 ± 3.8		51.4 ± 8.0		
Philips ⁴¹	-18.9 ± 2.5		-22.2 ± 3.2		36.3 ± 8.2		
Abbreviation: SRs: systolic strain rate.							

STRAIN

- Myocardial deformation (strain) can be measured using DTI or 2D STE. The latter is favored because of a lack of angle dependency.
- GLS is the optimal parameter of deformation for the early detection of subclinical LV dysfunction.
- Ideally, the measurements during chemotherapy should be compared with the baseline value. In patients with available baseline strain measurements, a relative percentage reduction of CLS of < 8% from baseline appears not to be meaningful, and those >15% from baseline the very likely to be abnormal.
- When applying STE for the longitudinal follow-up of patients with cancer, the same vendor-specific ultrasound machine should be used.

CASISTICA MOLINETTE

- 73 pazienti ♀
- carcinoma mammario
- ecocardiogramma 2D 3D Doppler prima della CT e al F.U. 9 mesi
- valutazione EF e altri indici sisto-diast

S.C. Cardiologia 2 Marra : M.Giorgi, A. Fava, G. Alunni, F. Astegiano COES Ciuffreda : M. Donadio, M. Mistrangelo

VARIABILITÀ INTEROPERATORE

E	t -	p value
2D	2,07	0,04
3D Triplano	2,04	0,04
3D Full	2,1	0,03

L' ECHO 3D full-volume si è dimostrata la metodica con maggior riproducibilità

• **GRUPPO 1A**: 13 pazienti (18%) senza alterazioni dell'EF, né degli altri indici

• **GRUPPO 1B**: 17 pazienti (23%) con EF inalterata ed alterazioni "ab initio" di altri indici, non progredite al follow-up

 <u>GRUPPO 2</u>: 40 pazienti (55%) con EF inalterata ed alterazioni di altri indici al follow-up

 GRUPPO 3: 3 pazienti (4%) con alterazioni significative dell'EF

CASISTICA MOLINETTE

- * L'EF si è confermata parametro molto specifico, ma tardivo e poco sensibile di CTX (alterazione significativa solo 4%)
- *55% Pts ha evidenziato almeno un'alterazione di altri indici
- * Le Pts con riduzione dell'EF hanno mostrato alterazione di tutti i nuovi indici (diastolici, sistolici e sisto-diastolici)
- * Lo strain sistolico (2D e 4D) è un indicatore precoce di cardiotossicità insieme all'alterazione della funzione diastolica

MANAGEMENT

WALL DYNAMICS (STRAIN) e DIASTOLE

NORMALE ALTERATO

