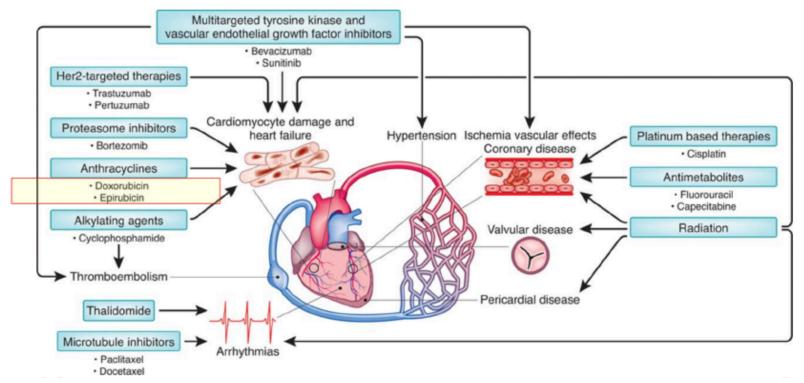


GIORNATE CARDIOLOGICHE TORINESI

Cardioprotection strategies Liposomal Anthracyclines

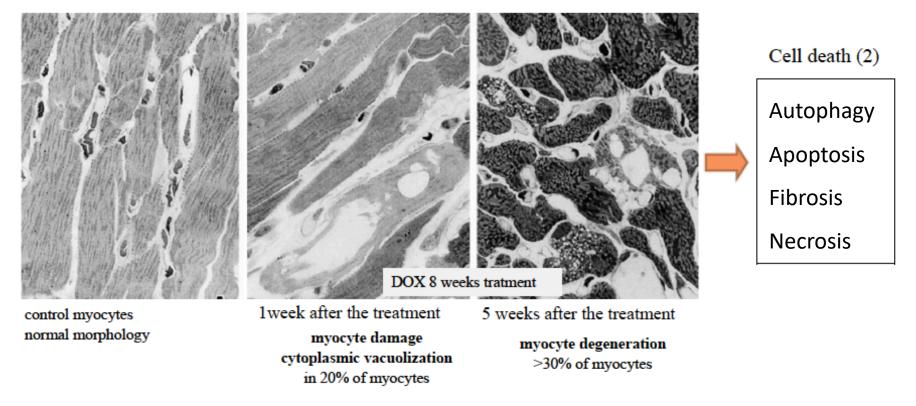
Annalisa Chiappella


Hematology

Disclosures: Annalisa Chiappella

Research Support/P.I.	N/A
Employee	N/A
Consultant	N/A
Major Stockholder	N/A
Conferences/Educational Activities	Amgen, Celgene, Janssen, Nanostring, Roche, Teva
Scientific Advisory Board	Celgene, Janssen

CARDIO-ONCOLOGY

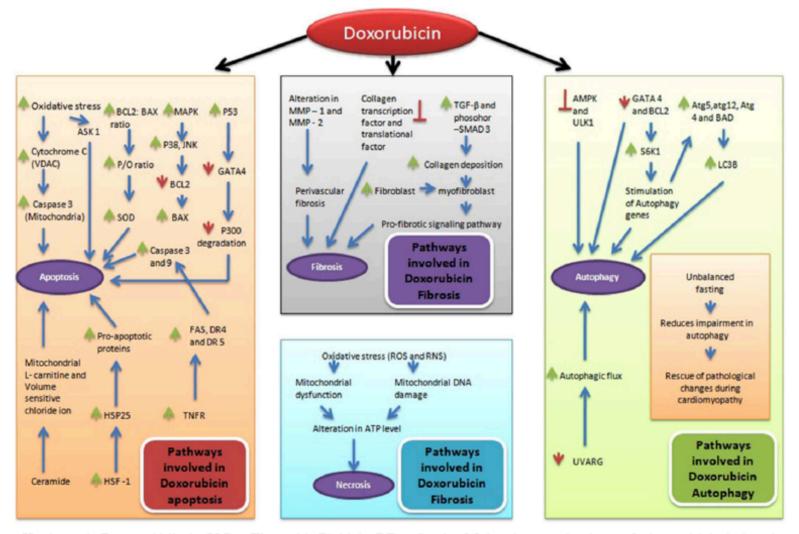


Lenneman, C. G. & Sawyer, D. B. Cardio-Oncology: An Update on Cardiotoxicity of Cancer-Related Treatment. Circ. Res. 118, 1008-20 (2016).

Monitoring for the development of **subclinical cardiotoxicity** is crucial for the prevention of clinical heart failure. Detecting a decreased LVEF after cancer therapy might be a late finding

Tajiri, K., Aonuma, K. & Sekine, I. Jpn. J. Clin. Oncol. 47, 678-682 (2017).

Cumulative and Irreversible Cardiac Mitochondrial Dysfunction Induced by Doxorubicin (1)

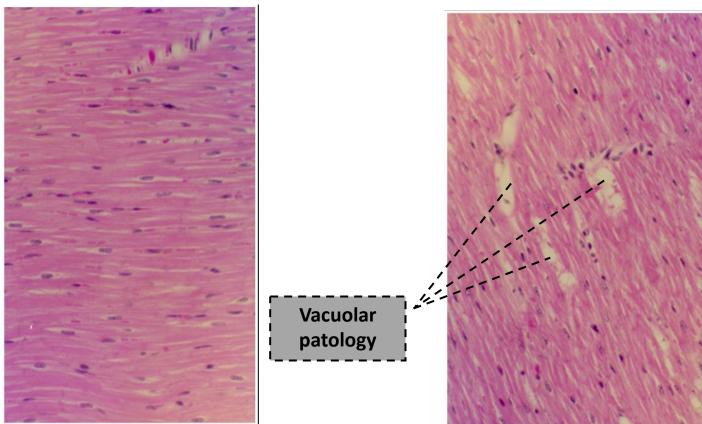

Zhou, S., Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res. 61, 771-7 (2001).

1.

2.

Kaviyarasi Renu, Abilash V.G., Tirupathi Pichiah P.B., S. A. Molecular mechanism of doxorubicin-induced cardiomyopathy – An update. Eur. J. Pharmacol. 818, 241–253 (2018).

Molecular mechanism of doxorubicin-induced cardiomyopathy



Kaviyarasi Renu, Abilash V.G., Tirupathi Pichiah P.B., S. A. Molecular mechanism of doxorubicin-induced cardiomyopathy – An update. *Eur. J. Pharmacol.* **818**, 241–253 (**2018**).

NPLD less cardiotoxic than doxorubicin

8 cycles 1.5 mg/sqm every 3 weeks

NPLD

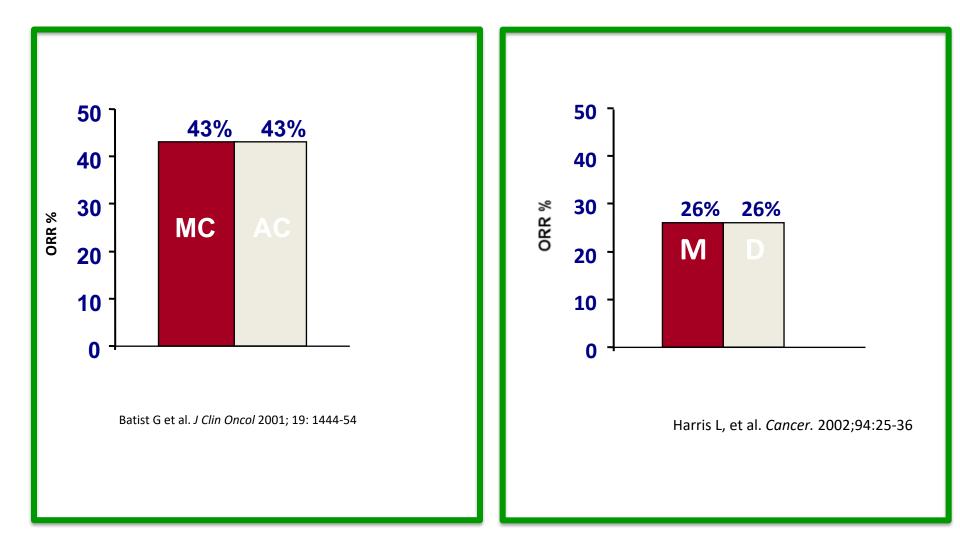
Comparison of the cardiotoxic effects of liposomal doxorubicin (TLC D-99) versus free doxorubicin in beagle dogs

Kanter PM et al. In Vivo 1993 7(1):17-26 1

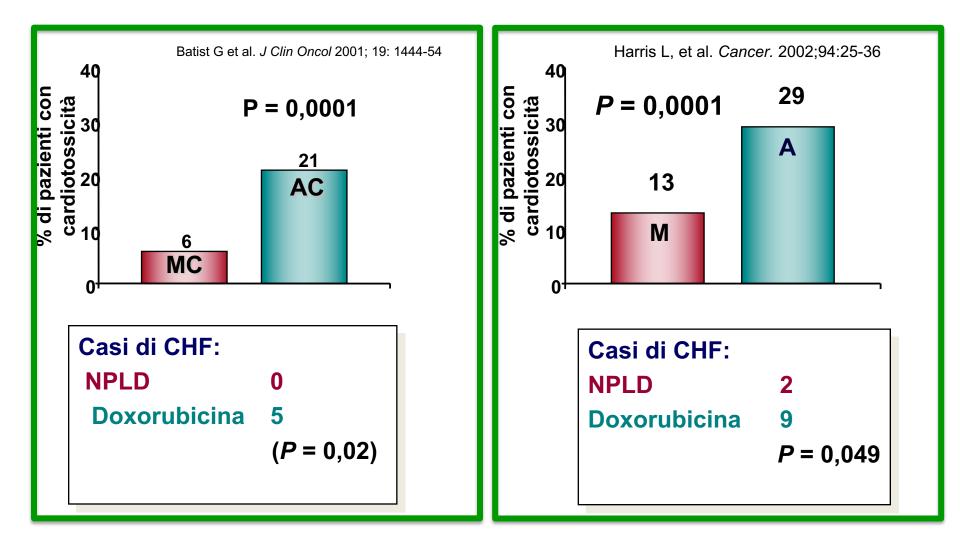
Doxorubicin

Phase III trial First line MBC

Study 1 Combination treatment (NPLD-CPA Vs DOX-CPA) Batist


Study 2 Single agent (NPLD Vs DOX) Harris Study 3 Combination treatment (NPLD-CPA Vs EPI-CPA) Chan

Primary objectives


- ORR, PFS, OS not inferior to conventional doxorubicin
- Reduction of cardiotoxicity

- 1. Batist G et al. J Clin Oncol. 2001;19:1444-54
- 2. Harris L et al. Cancer. 2002;94;1:25-36
- 3. Chan S et al. Annals of Oncology 2004;15: 1527–1534

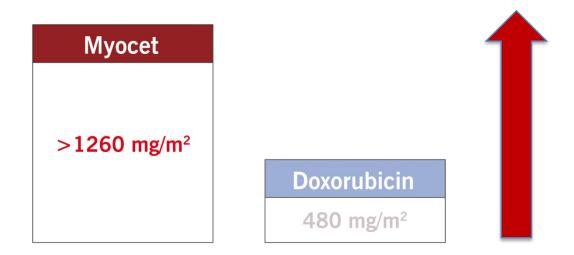
NPLD vs doxorubicin: ORR

NPLD vs doxorubicin: cardiotoxicity

Risk of CHF

Study or subgroup			Weight	Risk Ratio	
	n/Ν	n/N	M-H,Random,95% CI		M-H,Random,95% Cl
Batist 2001	0/142	5/155		21.5 %	0.10 [0.01, 1,78]
Harris 2002	2/108	9/116	·	78,5 %	0.24 [0.05, 1.08]
Total (95% CI)	250	271		100.0 %	0.20 [0.05, 0.75]
Total events: 2 (Myocet),	14 (Doxorubicin)				
Heterogeneity: $Tau^2 = 0/$		I / P = O I P + R = O / P / P			
neterogenero; rau- – w	0; ChF = 0,29, df =	1 (P - 0.0%)			
Test for overall effect; Z :	= 2,38 (P = 0,018)				
			0.1 0.2 0.5 1 2 5 10		
			Favours myocet - Favours deversible'n		
Study or subgroup	Myocet	Doxorubicin	Risk Ratio	Weight	Risk Ratio
, <u>b</u> p	n/N n/N M-H,Random,95% Cl			M-H,Random,95% C	
B			_		

	n/N	n/N	M-H,Random,95% CI		M-H,Random,95% Cl
Batist 2001	9/142	33/155		39,3 %	0.30 [0.15, 0.60]
Harris 2002	14/108	34/116		60.7 %	0.44 [0.25, 0.78]
Total (95% CI) Total events: 23 (Myocet), Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	; Chi ² = 0.75, df = 1 (27 1 P = 0.39); P =0.0%	-	100.0 %	0.38 [0.24, 0.59]
			0,1 0,2 0,5 1 2 5 10 Favours myocet Favours dexorubi	ân	


NPLD reduced the risk of CHF compared to conventional doxorubicin (*P*=0.02)

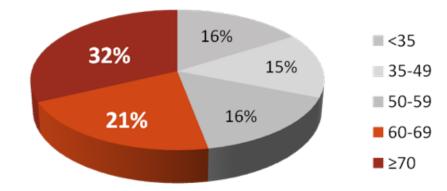
NPLD reduced the risk of clinical and subclinical cardiac failure compared to conventional doxorubicin (*P*<0,0001)

NPLD in breast cancer

Cumulative dose of NPLD: >1260 mg/sqm

Mean cumulative dose to a cardiotoxic event

1.Heintel et al. Ann Hematol. 2010; 2. Visani et al. Expert Rev Anticancer Ther. 2009; 3. Batist et al. Anticancer Drugs. 2006; 4. Harris et al. Cancer. 2002; 2.5. Chan et al. Ann Oncol. 2004; 6. Batist et al. J Clin Oncol. 2001; 7. SmPC NPLD; 8. Dando TM et al. AM J Cancer. 2005


Diffuse Large B-Cell Lymphoma

Most common NHL: 31%

- Peak incidence in sixth decade
- Incidence increased by 50-90% (depending on race, gender)

Distribution by IPI score: 34% of patients are IPI 3-5

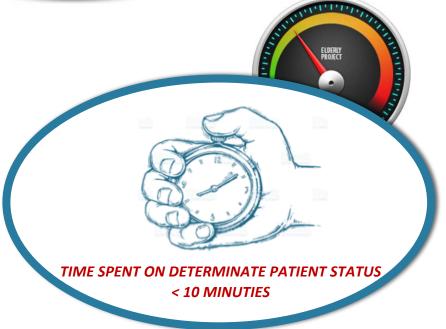
Prognostic factors for survival

IPI risk factors	Relative risk
Age: ≤60 yrs vs. > 60yrs	1.96
Serum LDH: normal vs. above normal	1.85
ECOG PS: 0,1 vs: ≥ 2	1.80
Extranodal involvement: $\leq 1 \text{ vs.} \geq 2 \text{ sites}$	1.48
Ann Arbor Stage: I/II vs. III or IV	1.47

17% 38% 28% IPI 0-1 IPI 2 IPI 3 IPI 4-5

Shipp, Blood 1994

COMPREHENSIVE GERIATRIC ASSESSMENT (CGA)


ELDERLY PROJECT

1.General Data 2.Disease Status 3. ADL 4.IADL 5.CIRS-G

Patient age: <80 ADL: 6 IADL 8 Comorbidity grade 2: 0 Comorbidity grade 3-4: 0 Patient profile: FIT

TALIANA LINFOMI

Patient age: ≥80 ADL: 6 IADL 8 Comorbidity grade 2: 0 Comorbidity grade 3-4: 0 Patient profile: UNFIT

Patient age: >80 ADL: 5 IADL 5 Comorbidity grade 2: 1 Comorbidity grade 3-4: 0 Patient profile: UNFIT

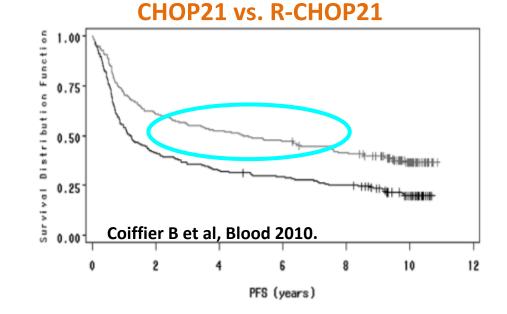
First line treatment

clinical practice guidelines

Annals of Oncology 26 (Supplement 5): v116–v125, 2015 doi:10.1093/annonc/mdv304

Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

H. Tilly¹, M. Gomes da Silva², U. Vitolo³, A. Jack⁴, M. Meignan⁵, A. Lopez-Guillermo⁶, J. Walewski⁷, M. André⁸, P. W. Johnson⁹, M. Pfreundschuh¹⁰ & M. Ladetto¹¹, on behalf of the ESMO Guidelines Committee^{*}

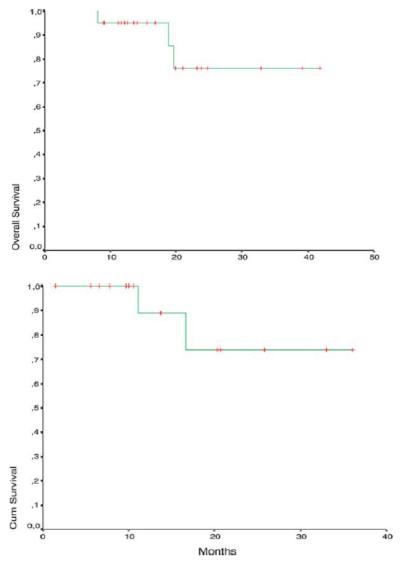

Elderly >60 years		
Fit, 60-80 years	>80 years without cardiac dysfunction	Unfit or frail or >60 years with cardiac dysfunction
R-CHOP21 × 6-8	Attenuated regimens:	Doxorubicin substitution with
(R-CHOP21 × 6 for IPI low risk) or	R-miniCHOP21×6	gemcitabine, etoposide or liposomal doxorubicin or others:
R-CHOP14×6 with 8 R		R-C(X)OP21 × 6
		or
		palliative care
Consider CNS prophylaxis in patients at risk		

First line treatment: FIT patients

RCHOP vs CHOP: 10-yrs PFS 37% vs 20%

R-CHOP21 is the standard in **DLBCL!**

R-COMP in elderly DLBCL


Characteristic	Population (N	<i>I</i> = 72)			populat	tion	Efficacy		lation
	n	%		$\frac{(n = n)}{n}$	72) %	95% CI	$\frac{(n=62)}{n}$	<u>.)</u> %	95% CI
Age, years			Response to chen						
Median	72		CR	41	57	43-67	41	66	53-78
Range	61-83		PR	10	14	7–24	10	16	8–28
≥70 years	43	60	Less than PR	21	29	19-41	11	18	9–30
Male gender	32	44	Alive, NED Relapsed NHL*	55 5	76 12	65–86 4–26	50 5	81 12	69–90 4–26
Clinical stage	52	11	Deaths	17	24	4–20 14–35	12	20	11-32
e e e e e e e e e e e e e e e e e e e	22	21	3-year survival		21	11 00		20	11 02
I–II	22	31	os		72	58-82		77	62-87
III–IV	50	69	FFS		39	28-51		46	32-58
Extranodal involvement	46	64	PFS		69	56-79		74	60-83
Bone marrow involvement	16	22	8						
ECOG performance status									
0-1	59	82	8						
>1	13	18							
Elevated LDH	49	72	8			<u> </u>			
International Prognostic Index			60 LVEF (%)						
1	14	21	S − − − 8				_		
2	16	23							
3–5	38	56	<u>8</u> – – – –						
LVEF									
Median	61		8						
Range	50-89		Basel	ine	Су	/cle 3	Cycle 5	E	nd of treatment

Luminari S et al, Ann Oncol 2010

R-COMP in elderly aggressive NHL with concurrent cardiac disease or pretreated with anthracyclines

Table I. Patients' characteristics at	t baseline	.7
Patients characteristics	N (%)	.4.
Sex (male/female) Age (median) Histology (B-cell diffuse Iarge/B-cell mantle)	13 (62)/8 (38) 70 (range 54–76) 18 (86)/3 (14)	Overall Survival
Stage (I/II/III/IV) Symptoms (A/B) IPI (low, low/intermediate, intermediate/high, high) Extranodal involvement	2 (9)/5 (24)/5 (24)/9 (43) 16 (76)/5 (24) 7 (33)/8 (38)/5 (24)/1 (5) 11 (52)	1.0 + + + + + + + + + + + + + + + + + + +
Bulky disease Previous antracycline chemotherapy	5 (24) 8 (38)	,6 • ,5 • ,4 •

Rigacci L et al, Hematol Oncol 2007

R-COMP in elderly aggressive NHL with concurrent cardiac disease or pretreated with anthracyclines

Table 2. Characteristics of patients with cardiac comorbidity or pre-treated patients

Patients	Cardiac disease	diac disease	LVEF (%)		P
		Baseline	3rd cycle	End of study	
1	Hypertensive cardiomyopathy	54	60	57	n.s.
2	CAD	58	65	60	n.s.
3	Hypokinesia	50	20*	n.e.	n.e.
4	CÂD	45	59	60	n.s
5	Hypokinesia	45	42	47	n.s
6	Hypertensive cardiomyopathy	60	58	63	n.s
7	Hypertensive cardiomyopathy	60	61	60	n.s
8	CAD	69	64	69	n.s
9	Hypertensive cardiomyopathy	50	58	53	n.s
10	CÁD	44	55	60	n.s
11	Hypertensive cardiomyopathy	57	60	58	n.s
12	Hypertensive cardiomyopathy	65	60	60	n.s
13	CAD	40	38	40	n.s.
14	Pre-treated	63	60	60	n.s.
15	Pre-treated	61	70	60	n.s.
16	Pre-treated	66	61	63	n.s.
17	Pre-treated	60	65	60	n.s.
18	Pre-treated	70	60	60	n.s.
19	Pre-treated	60	58	58	n.s.
20	Pre-treated	60	60	65	n.s.
21	Pre-treated	59	70	65	n.s.

LVEF, Left Ventricular Ejection Fraction; CAD, Coronary Artery Disease; n.e., not evaluated; n.s., not significant. Congestive heart failure after 1st cycle.

One case of CHF* resolved with farmacologic approach

✓ Median LVEF after 3 courses: 60% (range, 38–74%)

✓ Median LVEF at the end of treatment: 60% (range, 40–69%)

Rigacci L et al, Hematol Oncol 2007

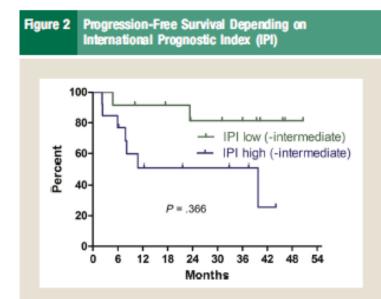
Nonpegylated Liposomal Doxorubicin as a Component of R-CHOP Is an Effective and Safe Alternative to Conventional Doxorubicin in the Treatment of Patients With Diffuse Large B-Cell Lymphoma and Preexisting Cardiac Diseases

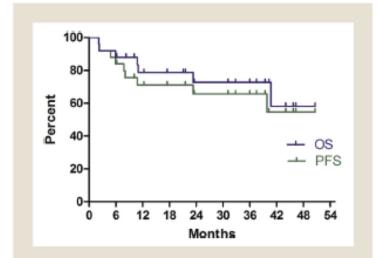
Sarah Rohlfing,¹ Matthias Aurich,² Tilman Schöning,³ Anthony D. Ho,¹ Mathias Witzens-Harig¹

Table 2	Preexisting Cardiac Diseases	
Variable	t in the second s	n
Heart Fai	lure	14
Coro nary	Heart Disease/Ischemic Cardiopathy	10
Cardiac /	Arrhythmia	10
History o	f Anthracyclines and Breast Radiation	2
Dilated C	ardiomyopath y	2
Cerebral	Stroke/Transient Ischemic Attack	2
Pulmona	y Hypertension With Reduced RVEF	1
Aortic Va	we Replacement	1
Distinct	V Hypertrophy With Aortic Stenosis	1

25 DLBCL patients

Table 1 Demographic Data	
Variable	n
Age, Years	
<60	5
60-75	9
>75	11
Sex	
Male	20
Female	5
Ann Arbor Stage	
N	12
II/IV	13
International Prognostic Index	
Low/low-intermediate risk	12
High/high-intermediate risk	13
Therapeutic Situation	
First-line	23
Second-line	2

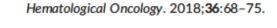

Rohlfing et al. Clinical Lymphoma, Myeloma and Leukemia 2015


Nonpegylated Liposomal Doxorubicin as a Component of R-CHOP Is an Effective and Safe Alternative to Conventional Doxorubicin in the Treatment of Patients With Diffuse Large B-Cell Lymphoma and Preexisting Cardiac Diseases

Sarah Rohlfing,¹ Matthias Aurich,² Tilman Schöning,³ Anthony D. Ho,¹ Mathias Witzens-Harig¹

Table 3 Median LVEF Before and After Therapy With NPLD

	LVEF Before	LVEF After
All Patients	51%	50%
Patients With Normal LVEF (≥55%)	60% (55%-65%)	57% (40%-61%)
Patients With Reduced LVEF (<55%)	45.5% (35%-53%)	46.5% (15%-56%)

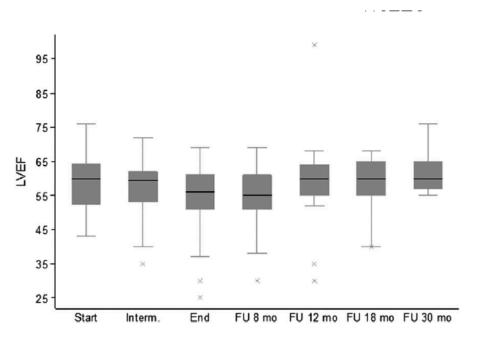


Rohlfing et al. Clinical Lymphoma, Myeloma and Leukemia 2015

Nonpegylated liposomal doxorubicin combination regimen in patients with diffuse large B-cell lymphoma and cardiac comorbidity. Results of the HEART01 phase II trial conducted by the Fondazione Italiana Linfomi

Stefano Luminari^{1,2} | Elda Viel³ | Andrés José Maria Ferreri⁴ | Francesco Zaja⁵ | Emanuela Chimienti⁶ | Gerardo Musuraca⁷ | Alessandra Tucci⁸ | Monica Balzarotti⁹ | Monica Tani¹⁰ | Francesca Salvi¹¹ | Emanuela A. Pesce¹² D | Angela Ferrari¹ | Anna M. Liberati¹³ | Antonio Spadea¹⁴ | Dario Marino¹⁵ | Maria Bruno-Ventre⁴ | Stefano Volpetti⁵ | Chiara Bottelli⁸ | Elena Ravaioli⁶ | Francesco Merli¹ | Michele Spina⁶

Variable	N	%	Missing N (%)	Variable	Ν	%	Missing N (%)
Age				Cardiac disorders			
Median	76			Ischemic cardiopathy	21	35	
Range	53-90		-	Atrial fibrillation	9	15	
>60	47	94		Left ventricular hypertrophy	8	13	
Sex, M	35	70	-	LVEF <50%	7	12	
Stage				Ventricular arrhythmia	5	8	
I-II III-IV	19 31	38 62	-	Moderate/severe mitral valve disease	3	5	
PS > 1	7	02 14	-	Moderate aortic valve disease	3	5	
LDH > UNL	23	51	5 (10)	Pulmonary hypertension	2	3	
ENS > 1	5	10	-	Uncontrolled hypertension	2	3	
Bulky ^a	5	10	1 (2)	Altered ECG	27	59	4 (8)
IPI				LVEF			
0-1	11	24		Median	60		3 (6)
2	16	26	5 (10)				0 (0)
3-5	18	40		IQR	12		


Nonpegylated liposomal doxorubicin combination regimen in patients with diffuse large B-cell lymphoma and cardiac comorbidity. Results of the HEART01 phase II trial conducted by the Fondazione Italiana Linfomi

Response	Ν	% (95CI)
CR	28	56 (41-70)
PR	8	16 (4-29)
ORR	36	72 (58-84)
SD/PD	10	20 (10-34)
NA/EW	4	8 (2-19)
3-yr survival	# events	% (95Cl
OS	22	50 (34-65)
PFS	30	38 (24-51)
FFS	36	27 (15-40)

TABLE 4 Summary of cardiac events during treatment

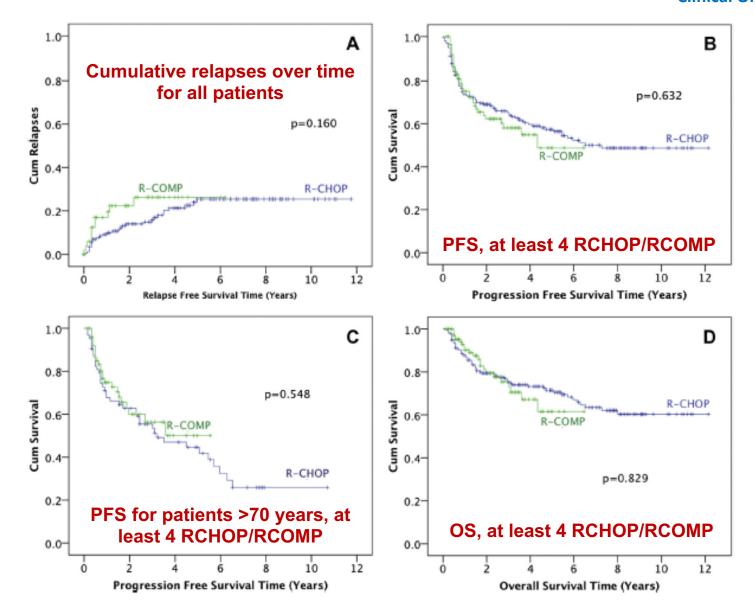
	Population (N = 50)		
Cardiac disorder	Grades 1-2, n (%)	Grades 3-4, n (%)	
Heart failure	1(2)	1(2)	
LVEF drop ≥20%	2(4) ^a	3(6)	
Increased troponin	2(4)	-	
Angina	-	1(2)	
Atrial fibrillation	-	1(2)	
Tot	5(10)	6(12)	

No significant modifications from baseline values of LVEF were observed during treatment and follow-up.

Luminari S et al, Hematol Oncol 2018

R-CHOP versus R-COMP: Are They Really Equally Effective?

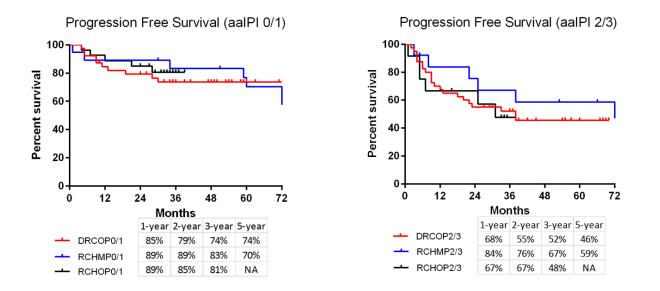
M. Mian^{*}, I. Wasle^{*}, G. Gamerith^{*}, P. Mondello[†], T. Melchardt[‡], T. Jäger[§], W. Linkesch[¶], M. Fiegl^{*}


Retrospective analysis

364 untreated DLBCL patients: 218 (60%) R-CHOP, 146 (40%) R-COMP.

Parameter	R-CHOP ($n = 218$)		R-COMP ($n = 146$)			P value	
	No.	Valid	%	No.	Valid	%	
Male:female	118:100	218	54:46	75:71	146	51:49	0.605
B symptoms	77	187	41	58	146	40	0.789
Age categories (years)							
<60	93	216	43	13	146	9	< 0.001
60-69	50		23	30		20	
70-79	61		28	62		43	
>80	12		6	41		28	
Stage							
I	37	218	17	22	146	15	0.461
II	60		27	34		23	
Ш	45		21	27		19	
IV	76		35	63		43	
Stage III/IV	121	218	55	88	146	60	0.367
≥2 extranodal sites	64	208	31	44	146	30	0.89
Performance status ≥ 2	48	188	25	37	145	25	0.99
LDH > UNL	108	190	57	80	146	55	0.708
International prognostic index >2	140	197	71	112	146	77	0.243
Lymphadenopathy >5 cm and/or	93	202	46	30	123	24	< 0.00
maximum spleen diameter ≥20 cm							
Pre-existing comorbidities							
Cardiovascular disease	83	206	40	103	146	71	< 0.001
Diabetes mellitus	18	206	9	21	146	14	0.09
COPD and/or asthma	11	205	5	21	146	14	0.004
Gastrointestinal disorders	17	206	8	22	146	15	0.04
Other neoplasias	25	205	12	30	146	20	0.033
Creatinine >2 mg/d1	18	205	9	21	146	14	0.10
Neurological disorders	16	205	8	23	146	16	0.020
Rheumatological diseases	18	205	9	17	146	12	0.37
Psychiatric disorders	15	205	7	5	146	3	0.12
Sum of comorbidities							
None	79	204	39	18	146	12	<0.00
1-2	98		48	85		58	
3-4	26		13	40		27	
>4	1		0.5	3		2	

R-CHOP versus R-COMP: Are They Really Equally Effective?


M. Mian^{*}, I. Wasle^{*}, G. Gamerith^{*}, P. Mondello[†], T. Melchardt[‡], T. Jäger[§], W. Linkesch[¶], M. Fiegl^{*}

The Clinical Outcome of Newly Diagnosed Patients >60 Years of Age with DLBCL Treated with Standard or Liposomal Chemotherapies

Retrospective analysis; DLBCL patients, age > 60

- 39 patients: RCHOP
- 79 patients: DRCOP, with pegylated liposomal doxorubicin in place of conventional doxorubicin
- ✓ 32 patients: RCHMP, with liposomal vincristine in place of conventional vincristine

Ahmed MA et al, Poster 3965, ASH 2015

Liposomal doxorubicin vs. conventional formulation

PS1038

LIPOSOMAL DOXORUBICIN IN AGGRESSIVE B CELL LYMPHOMA SHOWS SIMILAR EFFICACY TO THE CONVENTIONAL FORMULA-TION: LONG TERM RESULTS FROM A RETROSPECTIVE COHORT STUDY

A. García-Noblejas^{1,*}, J. Cannata-Ortiz¹, E. Acuña¹, J. Loscertales¹, A. Alegre¹, R. Arranz¹

¹Hematology, Hospital La Princesa, Madrid, Spain

Retrospective analysis.

78 patients:

- ✓ 61 control arm (A): conventional doxo
- ✓ 17 study arm (B):lyposomal doxo

Characteristics	Group A N= 61	Group B N= 17	р
Age (range)	70 (41-88)	78 (59-89)	0.001
Male / female	21/40	9/8	0.165
ECOG >2	4 (7%)	2 (11%)	0.617
Ann Arbor III-IV	43 (70%)	10 (56%)	0.389
B symptoms	38 (63%)	8 (44%)	0.179
Comorbidities			
HBP	24 (39%)	13 (76%)	0.007
DM	3 (5%)	2 (12%)	0.308
Dyslipemia	11 (18%)	5 (29%)	0.304
Smoking	15 (25%)	2 (12%)	0.257
Cardiopathy			0.001
Atrial fibrillation	6 (10%)	3 (18%)	
Ischemic		3 (18%)	
cardiopathy	2 U	1 (6%)	
Other			
LVEF <50%	2 (4%)	5 (31%)	0.001

Summary/Conclusion: In this study, the association use of LD to inmunochemotherapy in fragile patients showed similar efficacy as conventional doxorubicin, without increased toxicity.

Cardiotoxicity with rituximab, cyclophosphamide, non-pegylated liposomal doxorubicin, vincristine and prednisolone compared to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone in frontline treatment of patients with diffuse large B-cell lymphoma A randomised phase-III study from the Austrian Cancer Drug Therapy Working Group [Arbeitsgemeinschaft Medikamentöse Tumortherapie AGMT] (NHL-14)

Michael A. Fridrik ^{a,*}, Ulrich Jaeger ^b, Andreas Petzer ^c, Wolfgang Willenbacher ^d, Felix Keil ^e, Alois Lang ^f, Johannes Andel ^g, Sonja Burgstaller ^h, Otto Krieger ⁱ, Willi Oberaigner ^j, Kurt Sihorsch ^k, Richard Greil ¹

Baseline characteristics.

	R-COMP	R-CHOP
Randomised	43	45
Excluded (n)	3	6
Eligible (n)	40	39
Age median years (range)	65 (18-81)	65 (22-84)
Age >60 years	24 (60.0%)	25 (64.1%)
Male/female	23/17	22/17
WHO >1	1 (2.5%)	3 (7.7%)
IPI very good (0 P)	3 (7.5%)	1 (2.6%)
IPI good (1-2 P)	27 (67.5%)	28 (71.8%)
IPI poor (>2 P)	10 (25.0%)	10 (25.7%)
St III, IV	19 (47.5%)	18 (46.2%)
Non-smoker	20 (50.0%)	21 (53.8%)
Cardiac function WHO° 0	40 (100%)	39 (100%)
Hypertension	5 (12.5%)	6 (15.4%)
NT-proBNP (pg/ml)	108 (19-2072)	134.5 (10-920)
NT-proBNP <400 pg/ml	34 (89.0%)	35 (89.7%)
LVEF median (range)	64 (52-83)	63.5 (45-75)
LVEF <50%	0 (0.0%)	1 (2.6%)
Cumulative doxorubicin	295 mg/m ²	294.5 mg/m ²
dose (mg/sqm)	-	-

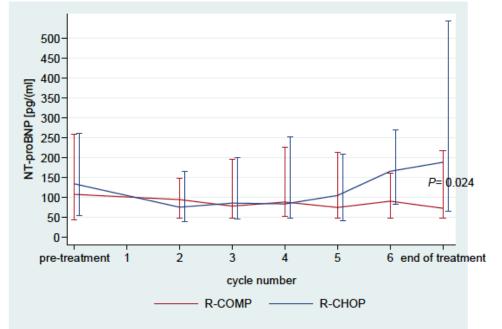
European Journal of Cancer 58 (2016) 112-121

R-COMP vs. R-CHOP

mean LVEF: 63.31% vs. 62.25%, (P 0.167).

LVEF < 50% during treatment: 4.6% vs. 15.8% (P<0.001).

NT-proBNP levels < 400 pg/ml during and at the end of treatment: 90% patients vs. 66.7% (P 0.013).


SAE: 26 vs. 40 (Infections: 15 vs. 28) (P 0.029).

Cardiotoxicity with rituximab, cyclophosphamide, non-pegylated liposomal doxorubicin, vincristine and prednisolone compared to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone in frontline treatment of patients with diffuse large B-cell lymphoma A randomised phase-III study from the Austrian Cancer Drug Therapy Working Group [Arbeitsgemeinschaft Medikamentöse Tumortherapie AGMT] (NHL-14)

Michael A. Fridrik ^{a,*}, Ulrich Jaeger ^b, Andreas Petzer ^c, Wolfgang Willenbacher ^d, Felix Keil ^e, Alois Lang ^f, Johannes Andel ^g, Sonja Burgstaller ^h, Otto Krieger ⁱ, Willi Oberaigner ^j, Kurt Sihorsch ^k, Richard Greil ¹

In patients with normal cardiac function, 6 cycles of R-CHOP resulted in a low rate of early cardiotoxicity. NPL-doxorubicin did not reduce cardiotoxicity, although cardiac safety signals were elevated in R-CHOP compared to R-COMP.

JOURNAL OF CLINICAL ONCOLOGY ASCOSPECIAL ARTICLE

Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline

Armenian, S. H. et al. J. Clin. Oncol. 35, 893-911 (2017).

- 1. Which patients with cancer are at increased risk for developing cardiac dysfunction?
- 2. Which preventive strategies are effective in minimizing risk during the administration of potentially cardiotoxic cancer therapy?
- 3. What are the preferred surveillance and monitoring approaches in patients at risk for cardiac dysfunction?

Recommendation 1.1. It is recommended that patients with cancer who meet any of the following criteria should be considered at increased risk for developing cardiac dysfunction.

 High-dose anthracycline epirubicin ≥ 600 m. Lower-dose anthracycline + lower-dose RT doxorubicin < 250 m. epirubicin < 600 m. 	/m2
	/m2
(where the heart is in the treatment field) $RT < 30 Gy$	

 High-dose radiotherapy (where the heart is in the treatment field)

 $RT \ge 30 Gy$

ASCO guidelines

JOURNAL OF CLINICAL ONCOLOGY ASCOSPECIAL ARTICLE

Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline

Armenian, S. H. et al. J. Clin. Oncol. 35, 893-911 (2017).

3

Which preventive strategies are effective in minimizing risk during the administration of potentially cardiotoxic cancer therapy?

Recommendation 3.1.

Clinicians should screen for and actively manage modifiable • cardiovascular risk factors in all patients receiving potentially • cardiotoxic treatments.

Smoking Hypertension Diabetes Dyslipidemia Obesity liposomal formulation of doxorubicin continuous infusion of doxorubicin

cardioprotectant dexrazoxane

Clinicians may incorporate a number of strategies

Recommendation 4.2.

Recommendation 3.2.

In individuals with clinical signs or symptoms concerning for cardiac dysfunction during routine clinical assessment, the following strategy is recommended:

- Echocardiogram for diagnostic workup
- Cardiac magnetic resonance imaging (MRI) or multigated acquisition (MUGA)
- Serum cardiac biomarkers

TAKE HOME MESSAGES

- ✓ A better definition of elderly patients with the CGA is mandatory.
- Consider clinical and biological markers of early cardiac dysfunction.
- ✓ For patients at high-risk of developing cardiac dysfunctions, alternative measures aimed at reducing cardiotoxicity without limiting the antitumor efficacy of treatment must be used.
- ✓ One randomized study and retrospective analyses reported similar effect between conventional and lyposomal doxorubicin.
- Clinicians may incorporate lyposomal anthracyclines in the treatment of UNFIT/FRAIL patients or patients at increased risk of developing cardiac dysfunctions.

Acknowledgements

Lymphoma Team Hematology Torino

U. Vitolo

- G. Benevolo
- C. Boccomini
- **B. Botto**
- A. Castellino
- A. Chiappella
- M. Nicolosi
- M. Novo
- L. Orsucci
- P. Pregno
- E. Santambrogio
- F. Vassallo

FONDAZIONE
ITALIANA LINFOMI

Radiotherapy	Pathology
Cardiology	Endocrinology
Radiodiagnostic	Nuclear Medicine