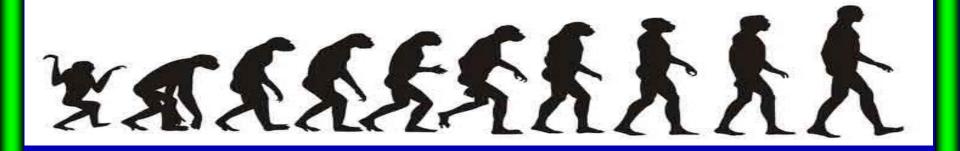
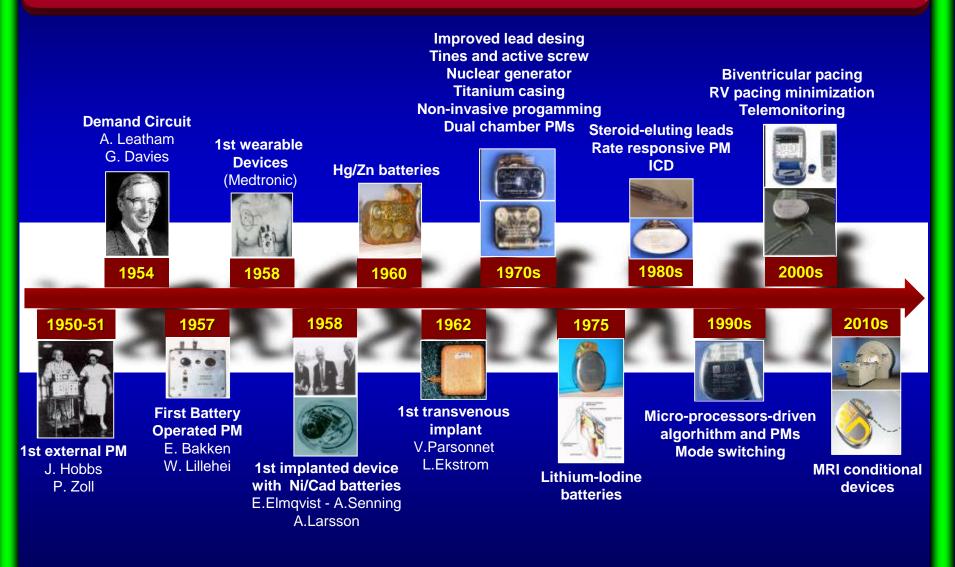
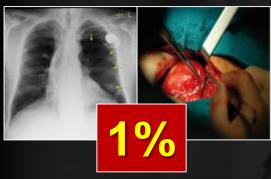
Advances in Cardiac Arrhythmias and Great Innovations in Cardiology XXVII Giornate Cardiologiche Torinesi


New generations pacemakers and ICDs: an update


Prof. Fiorenzo Gaita, MD Division of Cardiology Department of Medical Sciences University of Turin

Pacemaker's Evolution

Pacemaker's Evolution



Pacemaker Implants Worldwide

750.000 New cardiac PMs implanted / year

≈ 10% of complications

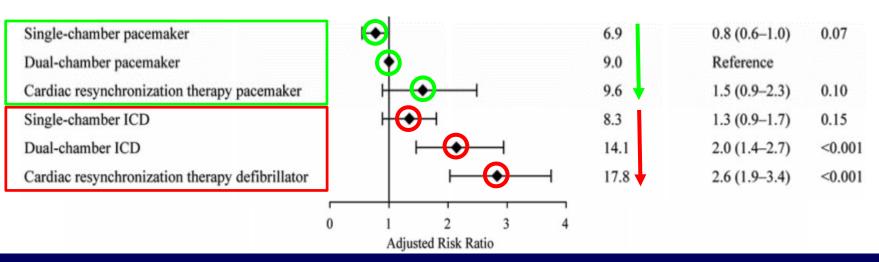
TRAUMATIC

POCKET-RELATED

LEAD-RELATED

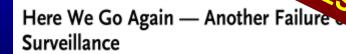
Udo EO et al. Heart Rhythm 2012; 9:728-735

N° of Leads and Complications


Complications after cardiac implantable electronic device implantations: an analysis

of a complete, nationwide cohort in Denmark

Rikke Esberg Kirkfeldt^{1,2*}, Jens Brock Johansen^{2,3}, Ellen Aagaard Nohr⁴, Ole Dan Jørgensen^{2,5}, and Jens Cosedis Nielsen¹

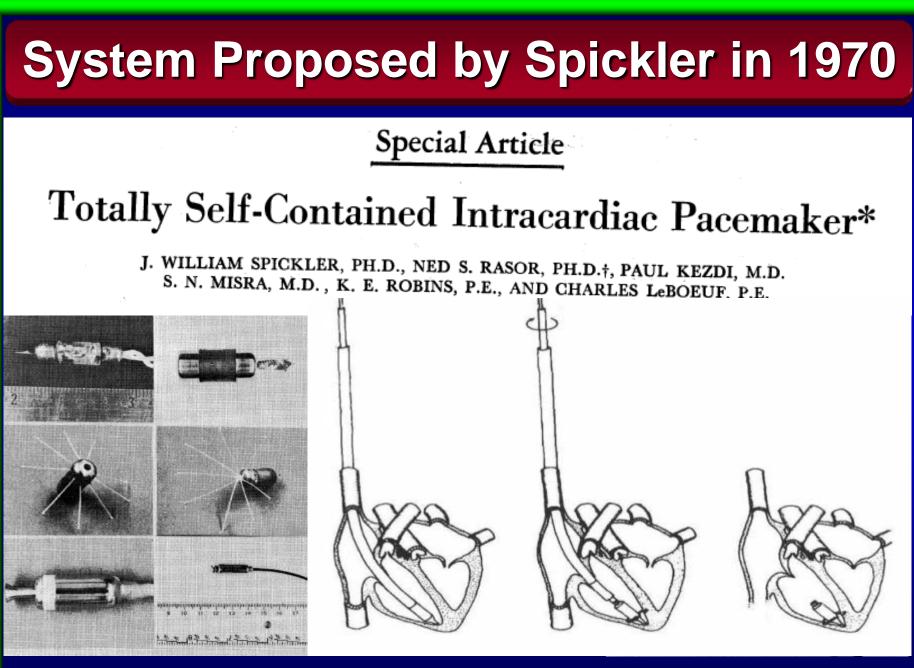

5918 consecutive patients ≈ **10%** complications

Kirkfeldt RE et al. Eur Heart J 2014; 35:1186-1194

The Lead Is the Weakest Link

CHRONIC STRESS BY BEATING HEART

Robert G. Hauser, M.D.


Wazni O et al. Nat Rev Cardiol 2010; 7: 376-383

Hauser RG New Engl J Med 2012; 366:10

of MEDICINE

RCH 8, 2012

arketing Device

Spickler JW et al. J Electrocardiol 1970; 3:325-331

...very often the realization of an idea may take some time....

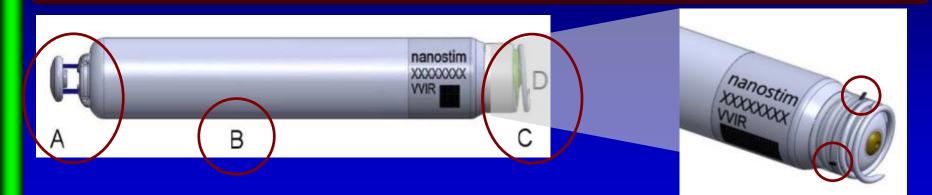
Idea

Technology (right tools)

Leadless Pacemakers

NANOSTIM[™] – SJM

MICRA[™] – MEDTRONIC



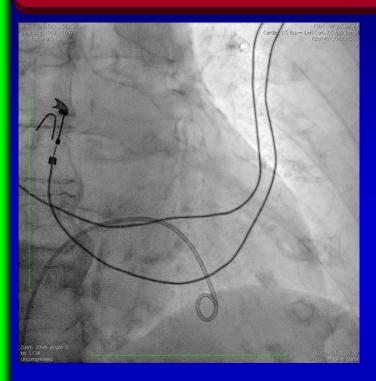
NanostimTM Leadless Pacemaker

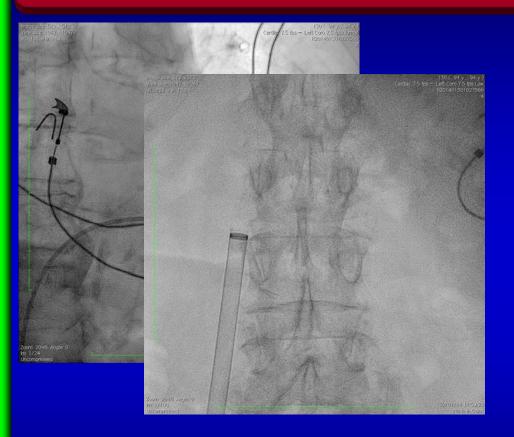
- Self-contained intracardiac device
- Length: 42 mm, maximum Ø: 6 mm
- Weight: 2 g, volume: 1 cm³
- VVI / VVIR Pacemaker
- Temperature based rate-sensor

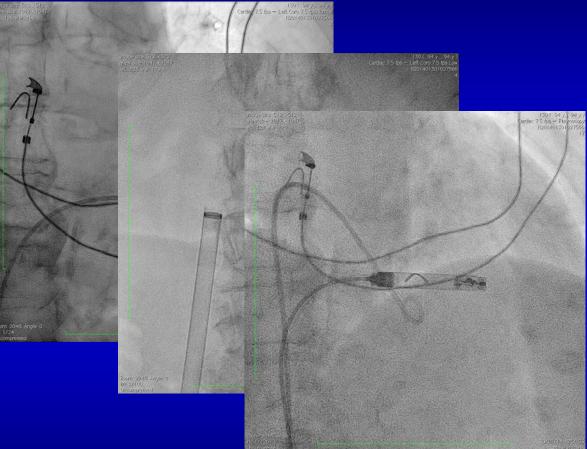
NanostimTM Leadless Pacemaker

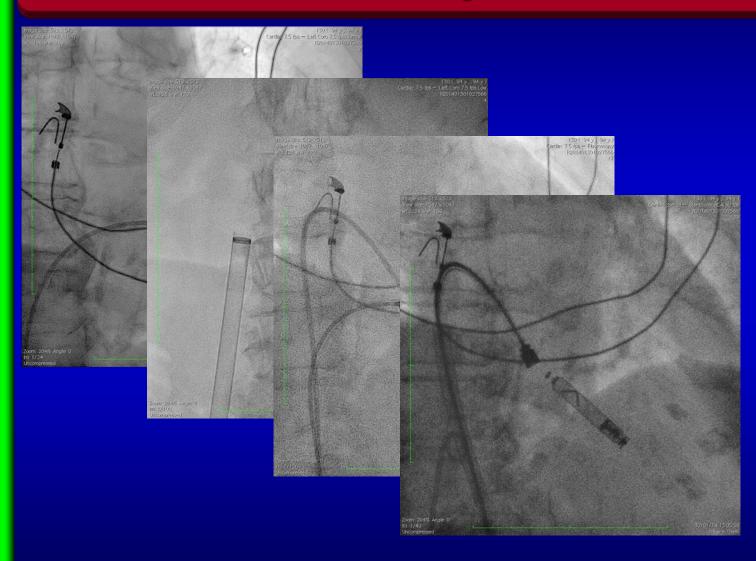
A. Docking feature for delivery, repositioning, retrieval B. Chemical lithium battery cell 100%: 9.8 y Longevity \rightarrow 2.5 V, 500 Ω , 60 bpm, pacing 50\%: 14.5 y

C. Helix provides 1^{ary} fixation, tines add 2^{ary} fixation
D. Steroid-eluting electrode tip (dexametahasone)


Nanostim[™] Delivery Catheter


- Single-operator design
- 18 French introducer
- Steerable delivery catheter





 Tethered connection to maintain device during measurements

ORIGINAL ARTICLE

Percutaneous Implantation of an Entirely Intracardiac Leadless Pacemaker

Vivek Y. Reddy, M.D., Derek V. Exner, M.D., M.P.H., Daniel J. Cantillon, M.D., Rahul Doshi, M.D., T. Jared Bunch, M.D., Gery F. Tomassoni, M.D., Paul A. Friedman, M.D., N.A. Mark Estes, III, M.D., John Ip, M.D., Imran Niazi, M.D., Kenneth Plunkitt, M.D., Rajesh Banker, M.D., James Porterfield, M.D., James E. Ip, M.D., and Srinivas R. Dukkipati, M.D., for the LEADLESS II Study Investigators*

- Prospective, multicenter, non-randomized, FDA IDE study
- Total Cohort: All patients enrolled by June 2015 (n=526)
- Primary Endpoints:
 - Safety: freedom from Serious Adverse Device Effects
 - Efficacy: Acceptable pacing capture threshold (< 2.0 V
 @ 0.4 msec) and sensing amplitude (R wave ≥5.0 mV)

ORIGINAL ARTICLE

Percutaneous Implantation of an Entirely Intracardiac Leadless Pacemaker

Multicenter Study, 526 patients (mean age 75 yrs)

- Main indication to implantation:
 - Permanent AF with AV block 294 (56%)
 - Sinus bradycardia with pauses/syncope 186 (35%)
 - SR with 2nd/3rd degree AV block
- Device successfully implanted in 504/526 (96%) pts
- Duration of implantation 47±25' / fluoroscopy 14±9'

Reddy V et al. N Engl J Med 2015; 373:1125-1135

46 (9%)

ORIGINAL ARTICLE

Percutaneous Implantation of an Entirely Intracardiac Leadless Pacemaker

Follow-up (6.9 months)

Adverse events 40/526 (7.6%)

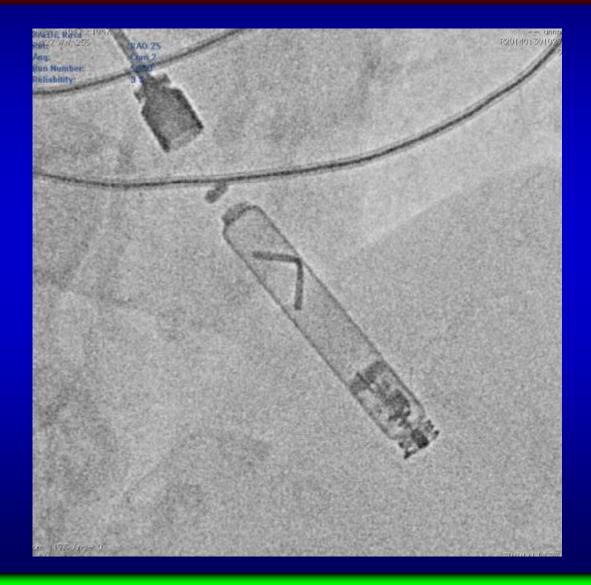
Cardiac perforation	8 (1.5%)
Vascular complications	6 (1.1%)
Device dislodgement	6 (1.1%)
Device retrieval due to <i>threshold</i>	4 (0.8%)
Procedure related death	2 (0.4%)

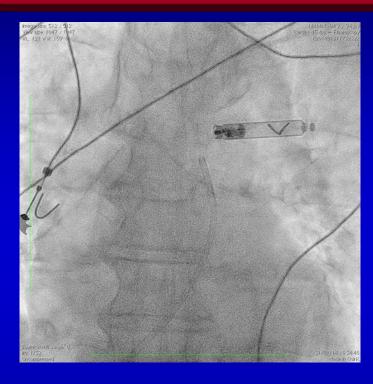
Reddy V et al. N Engl J Med 2015; 373:1125-1135

Clinical Case

R.B. 94 years old lady (59 kg, 160 cm, BMI 23)

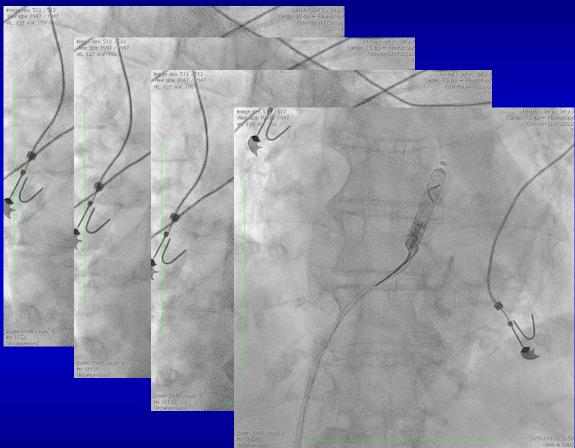
12/2012 left-subclavear DDD-PM implant for 2:1 AV block

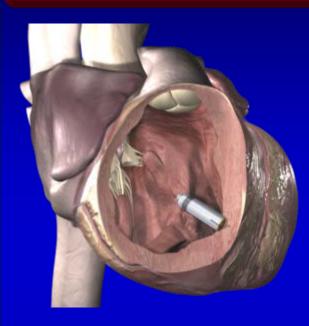

05/2013 transvenous lead extraction (left) for infection


05/2013 right-subclavear PM re-implant for persistent 2:1 and III grade AV block

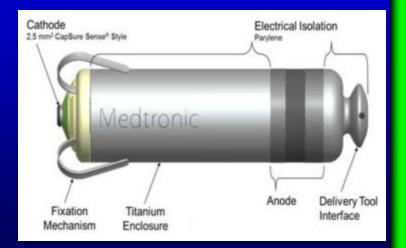
01/2014 transvenous lead extraction (right) for infection

30/01/2014 leadless pacemaker (Nanostim[™]) implant


Final Leadless PM Position



U U Francisco Hone In Oslak



MicraTM Transcatheter Pacing System

- Self-cointained intracardiac PM
- Length: 25.9 mm, max Ø: 6.7 mm
- Weight: 1.75 g, volume: 0.8 cm³
- VVIR Pacemaker
- 3-axes accelerometer sensor

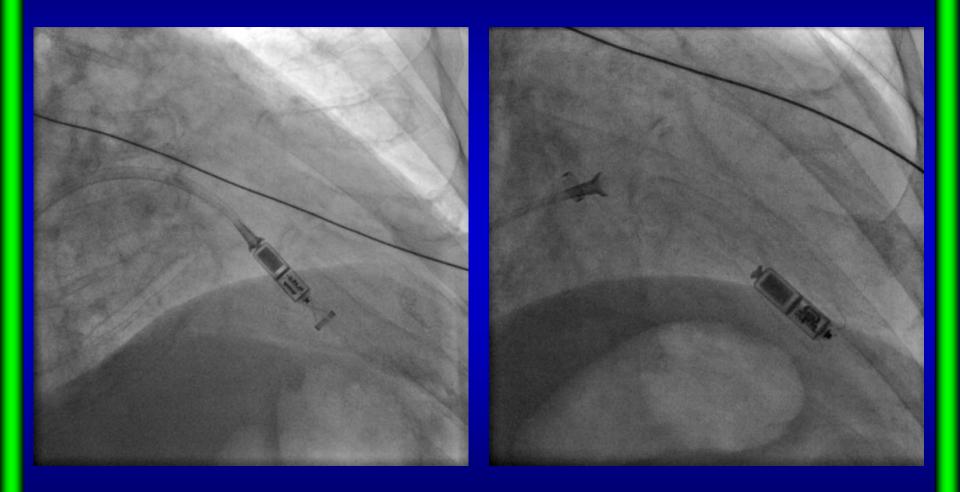
 Active fixation via 4 selfexpanding nitinol tines
 Interelectrode spacing 17 mm

Micra[™] Additional Features

DELIVERY SYSTEM

INTRODUCER

Communication with 2090 programmer



Battery longevity estimates:

- 10.1 years @ 1.5 V, 0.24 ms, 500 Ω, 100% VP

From P. Neuzil ESC 2014 - Barcelona

MicraTM Implantation Case

Early performance of a miniaturic cardiac pacemaker: the Miggarine Coherent of the Miggarian Coh

Philippe Ritter^{1*}, Gabor Z. ⁷ Razali Omar⁵, Lluís Monte Voltor Vol

- 140 patients enrolled so far (Target N = 720)
- 100% successful implants
- Average implant time 37 minutes
- Electrical measurements in expected ranges
- 1 (0.7%) pericardial effusion without tamponade
- 11 (8%) vascular complicationsa at puncture site

leadless

atheter

- Dual chamber & CRT applications pending
- atraumatic tip
- Communication (S-ICD) ٠
- Clinical planning

S-ICD[™] System & VVIR development complete 2016E

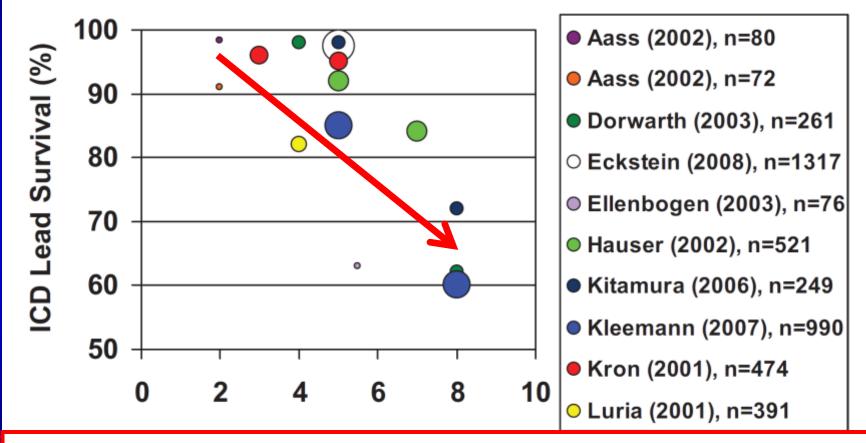
Leadless PM - Conclusions

Leadless right ventricular pacing has been proved feasible, with advantages for selected patients in terms of lead failure and infective complications

Most common procedure related adverse events include risk of cardiac perforation and vascular access complications

Leadless PM Limitations and Open Questions

Leadless pacing is currently limited to single right ventricular pacing

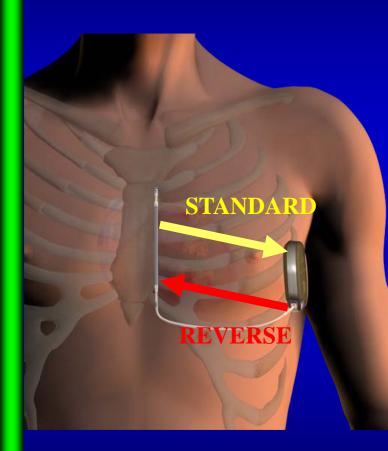

Long-term reliability data are lacking

How patients should be managed at the time of elective battery replacement?

ICD's Evolution

ICD Lead Performance

≈ 20-30% ICD transvenous lead fail by 10 yrs

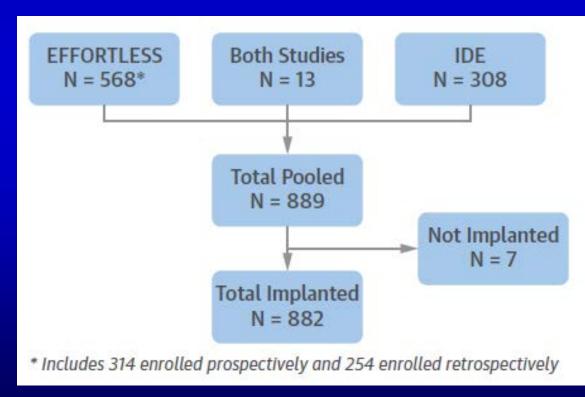

Circulation 2007; 115: 2474-2480

Circulation 2008; 117: 2721-2723

ICD's Evolution

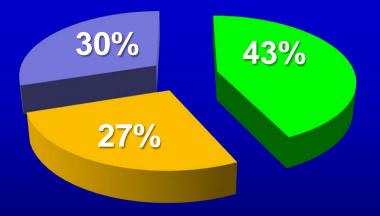
S-ICD[™] – General features

- Biphasic shock, 50% tilt
- 80J (delivered)
 - Up to 5 shocks per episode
 - Charge time for $80J \le 10$ sec
- Adaptive shock polarity
- Post-shock transcutaneous pacing (VVI@50bpm, 30 s)
- No ATP
- Battery longevity: 7.4 years*


* Normal use, defined as 3 full-energy capacitor charges per year

S-ICD[™] – Implant Procedure

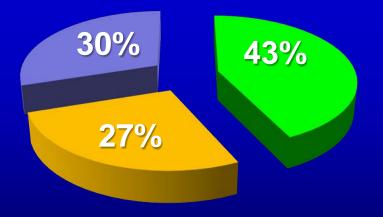
Create Device Pocket


Safety and Efficacy of the Totally Subcutaneous Implantable Defibrillator

2-Year Results From a Pooled Analysis of the IDE Study and EFFORTLESS Registry

43% implanted for SCD 1ary prevention + EF <35%

1ary prevention low EF
1ary prevention other
2ary prevention



Demographic			
Age (years)	50.3 ± 16.9		
Male (n, %)	636 (72.5)		
Ischemic	330 (37.8%)		
Genetic	58 (6.7%)		
Idiopathic VF	40 (4.6%)		
Channelopathies	90 (10.3%)		
NYHA Classification II-IV	327 (37.5%)		
Atrial Fibrillation	143 (16.4%)		
Previous Defibrillator	120 (13.7%)		

J Am Coll Cardiol 2015; 65:1605-1615

43% implanted for SCD 1ary prevention + EF <35%

1ary prevention low EF
1ary prevention other
2ary prevention

Demographic			
<u>Age (years)</u>	<u>50.3 ± 16.9</u>		
Male (n, %)	636 (72.5)		
Ischemic	330 (37.8%)		
<u>Genetic</u>	<u>53 (6.7%)</u>		
Idiopathic VF	<u>40 (4.6%)</u>		
<u>Channelopathies</u>	<u>90 (10.3%)</u>		
NYHA Classification II-IV	327 (37.5%)		
Atrial Fibrillation	143 (16.4%)		
Previous Defibrillator	120 (13.7%)		

J Am Coll Cardiol 2015; 65:1605-1615

Mortality 3.2% at 2 years

First shock efficacy: 90.1%

All 5 shocks set efficacy: 98.2%

J Am Coll Cardiol 2015; 65:1605-1615

Subcutaneous-ICD – Concerns

No antibradycardia / biventricular pacing

Shock only / No antitachycardia pacing available

 Weight, dimensions and costs are higher than standard ICDs

New ESC VT and SCD Guidelines

Subcutaneous implantable cardioverter defibrillator

Recommendations	C lass ^a	Level ^b	Ref. ^c
Subcutaneous defibrillators should be considered as an alternative to transvenous defibrillators in patients with an indication for an ICD when pacing therapy for bradycardia support, cardiac resynchronization or antitachycardia pacing is not needed.	lla	с	157, 158

Eur Heart J. 2015 Aug 29. pii: ehv316. [Epub ahead of print]

Potential S-ICD candidates

Young patients (e.g channelopathies) without anticipated need for antibradycardia / antitachycardia or biventricular pacing are the best candidates for S-ICD

Thank you for your attention!

100