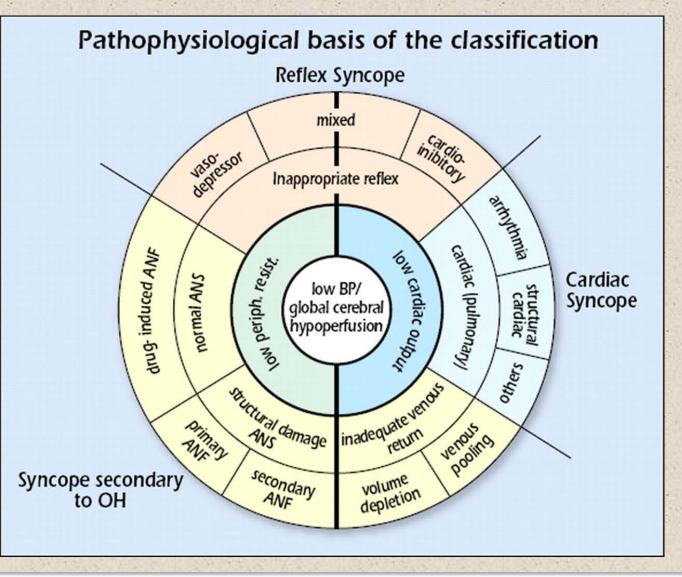


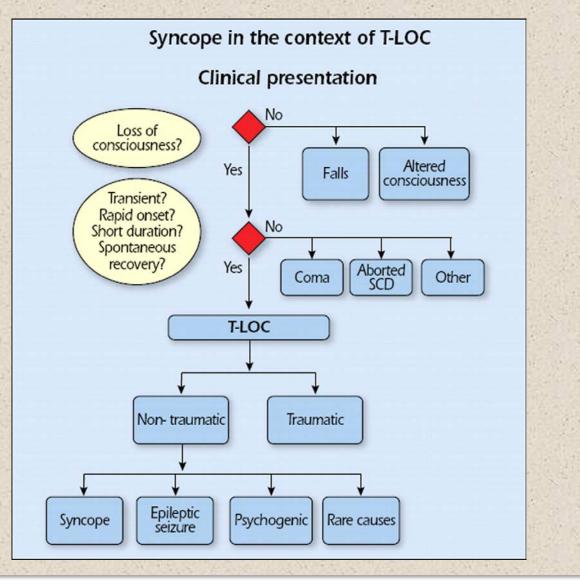
DZHK DEUTSCHES ZENTRUM FÜR HERZ-KREISLAUF-FORSCHUNG E.V. Medizinische Fakultät Mannheim der Universität Heidelberg

Universitätsklinikum Mannheim

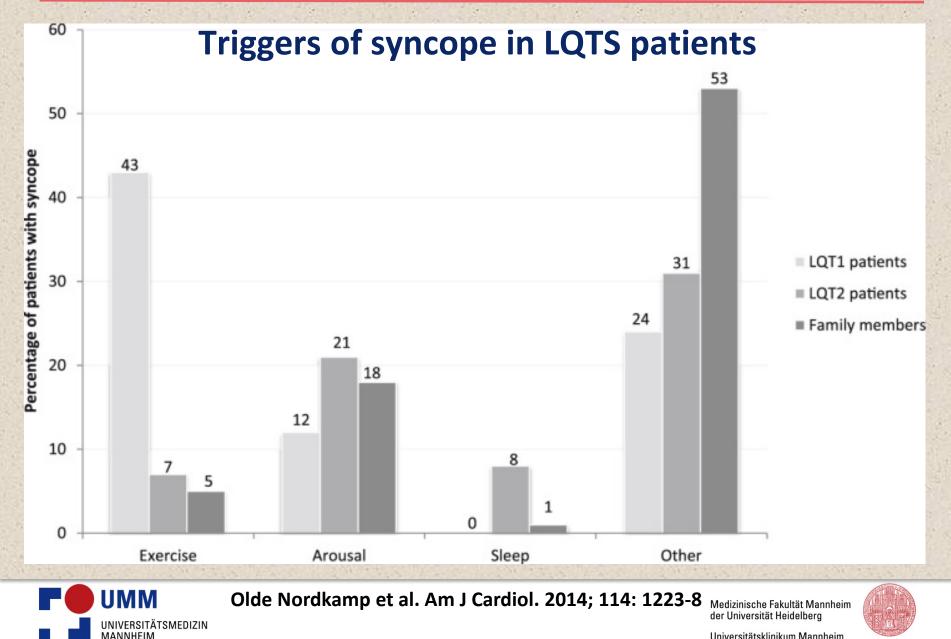

Prognostic role of syncope in patients with Long QT Syndrome

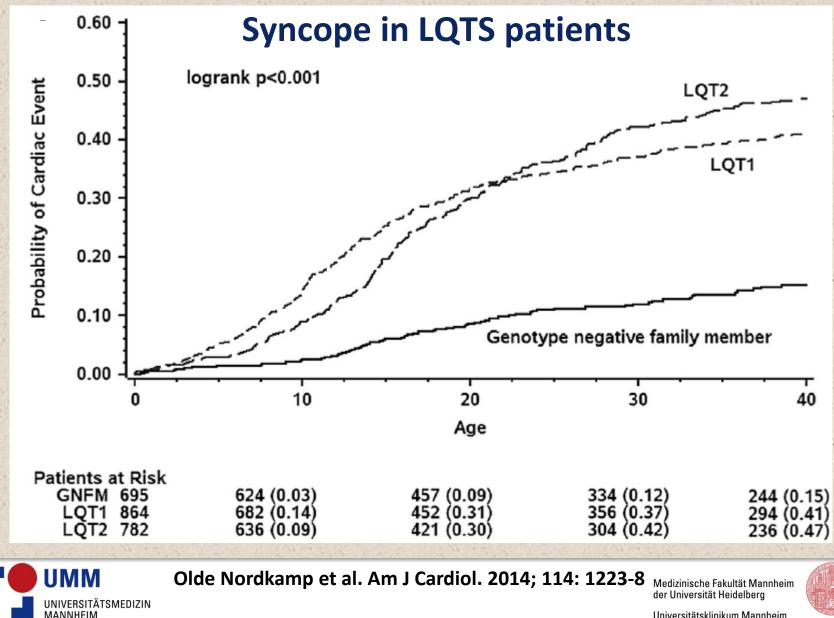
Prof. Dr. Martin Borggrefe Mannheim

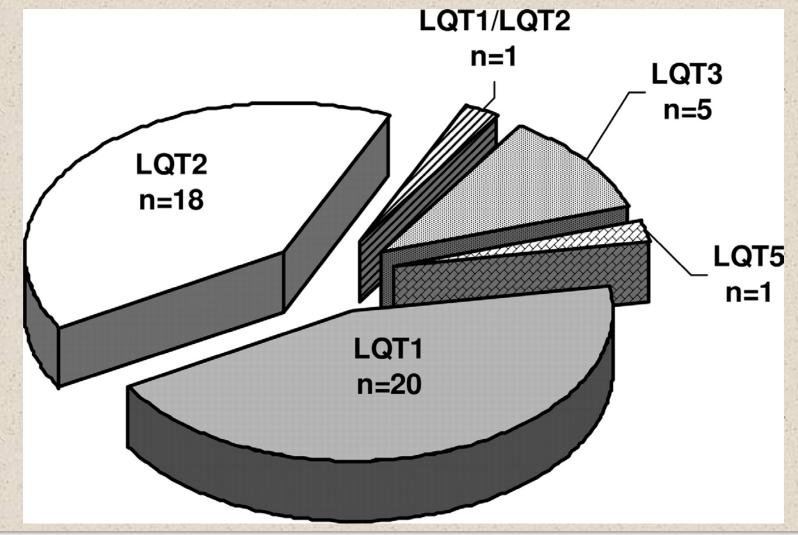
ADVANCES IN CARDIAC ARRHYTHMIAS and GREAT INNOVATIONS IN CARDIOLOGY



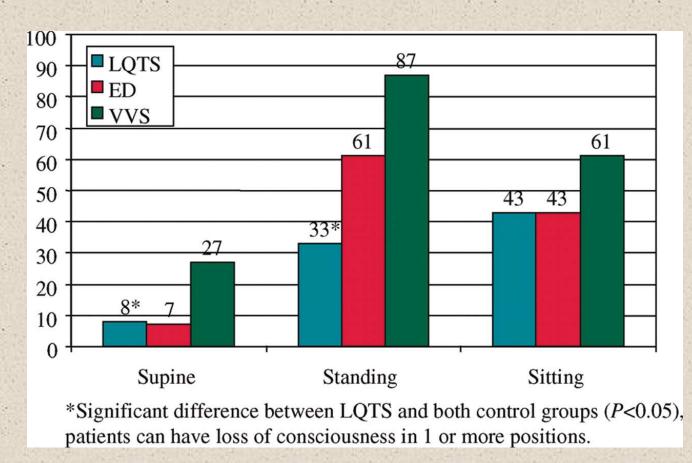
XXVII GIORNATE CARDIOLOGICHE TORINESI




Moya et al. Eur Heart J. 2009; 30: 2631-71

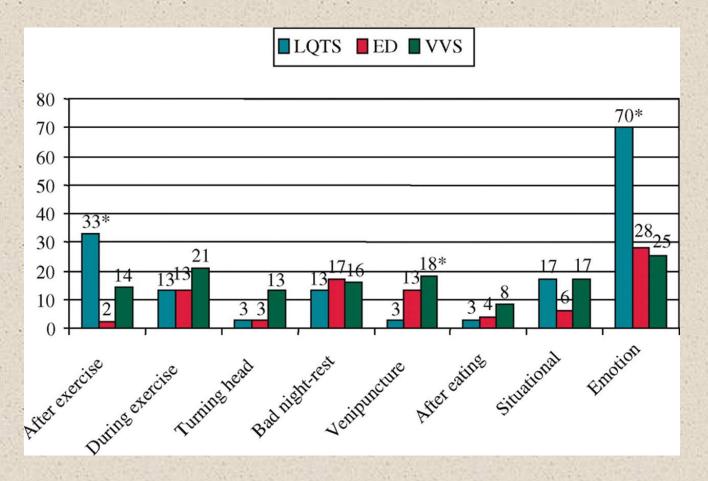


Moya et al. Eur Heart J. 2009; 30: 2631-71



Taggart et al. Circulation 2007; 115: 2613-20

Value of history-taking in syncope patients: in whom to suspect long QT syndrome?



Colman et al. Europace 2009; 11: 937-43

Value of history-taking in syncope patients: in whom to suspect long QT syndrome?

Colman et al. Europace 2009; 11: 937-43

Medizinische Fakultät Mannheim der Universität Heidelberg

Table 2 Frequency of prodromal symptoms and family history in long QT syndrome (LQTS) patients, emergencydepartment (ED) patients, and in patients with vasovagal syncope younger than 40 years

	$LQTS (n = 32)^{a}$	ED (n = 113) ^b	Vasovagal (n = 69) ^c	P-value, ED vs. LQTS	P-value, VVS vs. LQTS	LR ED (95% CI)	LR VVS (95% CI)
Nausea	8 (29%)	50 (46%)	41 (60%)	0.10	0.005	0.6 (0.3–1.2)	0.56 (0.38-0.81)
Sweating	18 (67%)	65 (60%)	18 (71%)	0.50	0.71	1.1 (0.8–1.5)	1.06 (0.78-1.4)
Paleness	18 (67%)	53 (63%)	54 (83%)	0.74	0.08	1.1 (0.7–1.4)	1.25 (0.93–1.67)
Light-headedness	23 (82%)	79 (73%)	55 (80%)	0.33	0.78	1.1 (0.9–1.3)	0.97 (0.79-1.20)
Blurring of vision	14 (54%)	46 (44%)	37 (55%)	0.36	0.91	1.2 (0.8–1.9)	1.03 (0.68-1.56)
Wanting to lie down	14 (50%)	52 (48%)	45 (66%)	0.83	0.14	1.0 (0.7-1.6)	1.30 (0.88-1.99)
Palpitations	12 (44%)	22 (21%)	29 (43%)	0.01	0.92	2.1 (1.2–3.7)	0.97 (0.59-1.61)
Chest pain	4 (15%)	14 (13%)	13 (19%)	0.79	0.43	1.2 (0.4–3.2)	1.29 (0.46-3.61)
Shoulder pain	0	10 (9.3%)	4 (6%)	0.11	0.26	NA	NA
Funny smell/taste	2 (7.7%)	5 (4.7%)	5 (7.5%)	0.54	0.63	1.6 (0.3-8.0)	0.97 (0.20-4.69)
Abdominal discomfort	4 (16%)	10 (9.5%)	12 (18.0%)	0.35	0.54	1.7 (0.6-4.9)	1.14 (0.41-3.2)
Tingling around the mouth and/or fingers	5 (20%)	20 (19%)	18 (28%)	0.91	0.45	1.1 (0.4–2.5)	1.39 (0.58-3.33)
Family history of syncopal episodes-no. (%)	23 (72%)	10 (9%)	23 (33%)	<0.001	<0.001	3.2 (1.9–5.6)	2.4 (1.3-4.2)
Family history of sudden death-no. (%)	21 (66%)	12 (10%)	12 (17%)	<0.001	<0.001	2.6 (1.6-4.2)	2.4 (1.5–3.9)
Family history of cardiovascular disease-no. (%)	23 (72%)	31 (28%)	35 (51%)	<0.001	0.04	2.6 (1.5-4.5)	1.8 (0.96–3.2)

FAST, Fainting Assessment Trial; LR, likelihood ratio; VVS, vasovagal syncope. Values in bold face are statistically significant.

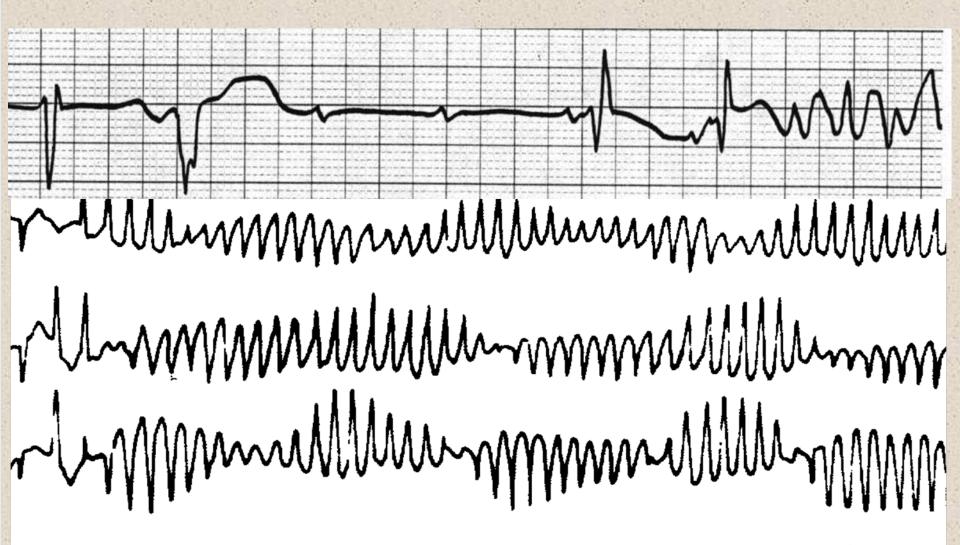
^aIn six patients data of at least one symptom are missing or patient does not know.

^bIn nine patients data of at least one symptom are missing or patient does not know.

^cIn four patients data of at least one symptom are missing or patient does not know.

Colman et al. Europace 2009; 11: 937-43

Long QT syndrome patients may faint due to neurocardiogenic syncope


Conclusion Syncope in LQTS can be of neurocardiogenic origin and is not necessarily due to TdP. The reason for neurocardiogenic syncope in LQTS is unknown, but involvement of the autonomic nervous system outside the heart is possible.

Toft et al. Europace 2003; 5: 367-70

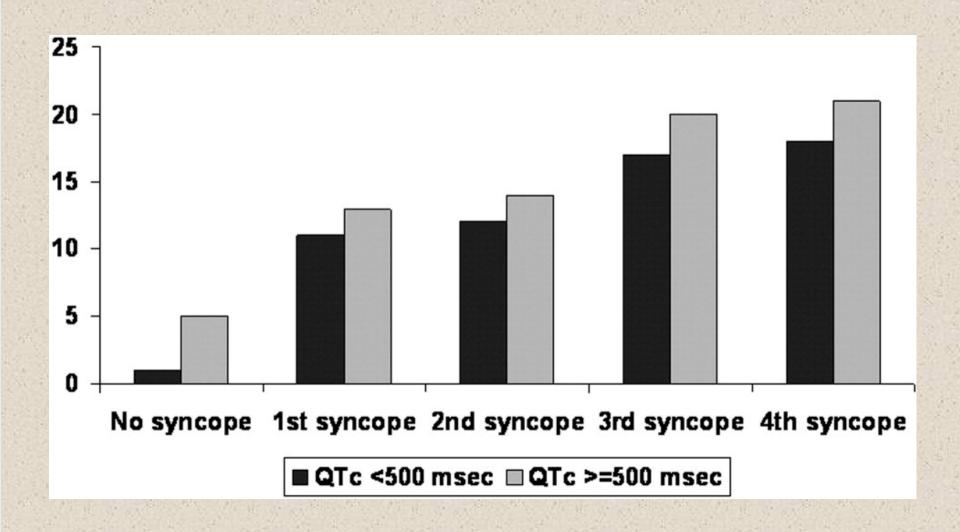
Medizinische Fakultät Mannheim der Universität Heidelberg

Medizinische Fakultät Mannheim der Universität Heidelberg

Abnormal electroencephalograms in patients with long QT syndrome

In this prospective pilot study, EEG abnormalities were found in 72% of individuals with genetically confirmed LQTS due to potassium channel mutations that was more frequent than in healthy controls. These results may indicate that ion channel dysfunction leading to cardiac arrhythmias may coexpress as abnormal findings in the EEG. These findings may be of importance in understanding the possible coexistence of cerebral and cardiac symptoms.

Haugaa et al. Heart Rhythm 2013; 10: 1877-83



Abnormal electroencephalograms in patients with long QT syndrome

A **EEG Patient #5** В **EEG** channel Longitudinal Monopolar Transversal EEG Patient #11 F7-FP1 FP1 **EEG channel** FP1-F3 FP2 FP1-X1 F3-C3 FP1 X1-FP2 F3 C3-P3 FP2 FP2-F8 Month F4 P3-01 mm F3 F7 F7-F3 F4 01-T5 F7 F3-FZ F8 T5-T3 F8 тз FZ-F4 T3-F7 Т3 **T4** F4-F8 F7-FP1 Τ4 T3-C3 **T5** FP2-F4 T5 C3-CZ T6 F4-C4 **T6** C3 CZ-C4 C4-P4 C3 C4-T4 C4 P4-02 C4 **P3** T5-P3 **O2-T6** P3 P4 P3-PZ T6-T4 P4 PZ-P4 01 T4-F8 01 annan 02 P4-T6 **F8-FP2** 02 T3-T5 A1 A1-T3 A1 T5-01 A2 T3-C3 A2 01-02 FZ C3-C4 FZ monor mannim cz C4-T4 O2-T6 1 S cz PZ T6-T4 T4-A2 P7 ECG QTc=480 ms QTc=480 ms

Haugaa et al. Heart Rhythm 2013; 10: 1877-83

Liu et al. J Am Coll Cardiol 2011; 57: 941-50.

Recurrent Syncope as a Predictor of Sudden Death

	Adjusted Risk				
Variable		95% CI	p Value		
First syncope event vs. no events	6.54	3.96-10.80	<0.001		
Second syncope event vs. no events	6.69	6.65-12.25	<0.001		
Third syncope event vs. no events	12.51	7.03-22.28	<0.001		
\geq 4 Syncope events vs. no events	14.65	8.02-26.76	<0.001		

Liu et al. J Am Coll Cardiol 2011; 57: 941-50.

Risk of fatal arrhythmic events in long QT syndrome patients after syncope

Risk Factors for the First Syncope Event After the Start of Beta-Blocker Treatment in Long QT Syndrome Patients With Previous Episodes of Syncope

Parameter	HR	95% CI	p Value
Male subjects age 0 to 13 yrs vs. male subjects age 14 to 40 yrs	3.16	1.92-5.78	<0.001
Female subjects age 0 to 13 yrs vs. male subjects age 14 to 40 yrs	3.04	1.82-5.08	<0.001
Female subjects age 14 to 40 yrs vs. male subjects age 14 to 40 yrs	2.27	1.45-3.58	<0.001
QTc interval >500 ms	1.10	0.86-1.42	0.46

UMM UNIVERSITÄTSMEDIZIN MANNHEIM

Table 3

Risk of fatal arrhythmic events in long QT syndrome patients after syncope

Table 2

Cox Model for Risk Factors Related to Severe Cardiac Events in Patients Presenting With the First Syncope Event and Repeated Syncope Events On and Off Beta-Blocker Therapy

Parameter	HR	95% Cl	p Value
Syncopal episodes and beta-blocker therapy			
≥1 syncopal events on beta-blocker therapy*	3.59	2.25-5.74	<0.001
>1 syncopal event off beta-blocker therapy*	1.96	1.37-2.82	<0.001
QTc interval >500 ms	1.76	1.32-2.27	<0.001
Female subjects age 14 to 40 yrs†	1.86	1.40-2.49	<0.001
Time-dependent beta-blocker therapy	0.46	0.32-0.65	<0.001

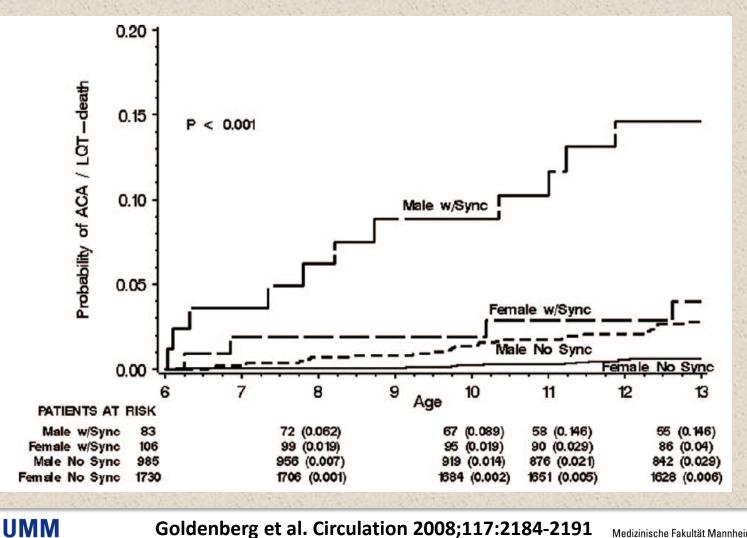
*Relative to subjects with only 1 syncopal episode occurring while off beta-blocker therapy. †Relative to male subjects age 14 to 40 years.

CI = confidence interval; HR = hazard ratio; QTc = corrected QT.

Jons et al. J Am Coll Cardiol 2010; 55:783-8

Factors for ACA or SCD During Childhood: Risk Factors for Boys and Girls

	Males		Females			
Risk Factor	HR (95% CI)	Р	HR (95% CI)	Р	P for Interaction†	
QTc duration					0.055	
QTc $>$ 500 vs \leq 500 ms	2.72 (1.50-4.92)	0.001	0.95 (0.39–2.33)	0.91	ſ	
Prior syncope					0.01‡	
Recent (<2 y) vs no syncope	6.16 (3.41–11.15)	< 0.001	27.82 (9.72–79.60)	<0.001		
Remote (≤2 y) vs no syncope	2.67 (1.22-5.85)	0.01	12.04 (3.79–38.26)	<0.001		



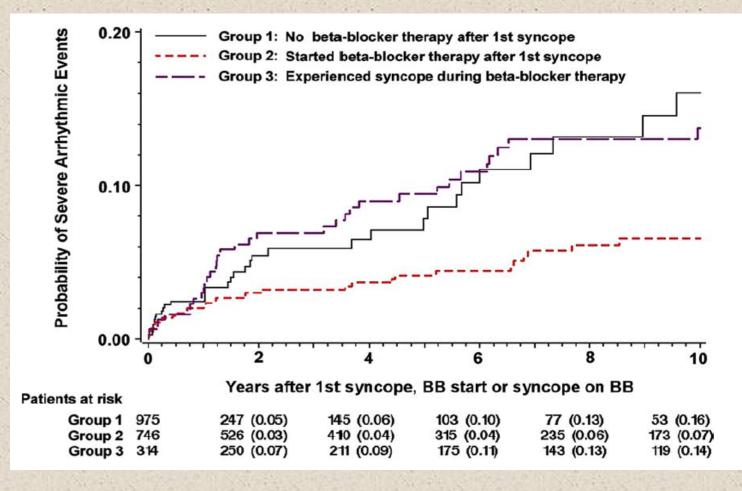
Goldenberg et al. Circulation 2008;117:2184-2191

Medizinische Fakultät Mannheim der Universität Heidelberg

Sudden death after 6 years of age

Goldenberg et al. Circulation 2008;117:2184-2191

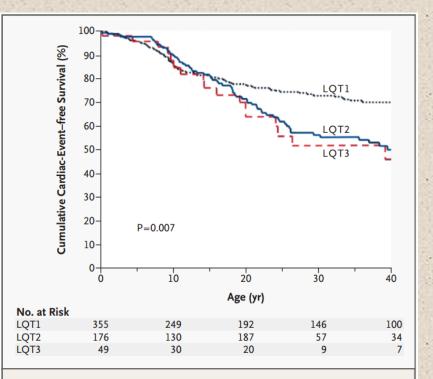
UNIVERSITÄTSMEDIZIN


MANNHEIM

Medizinische Fakultät Mannheim der Universität Heidelberg

The Cumulative Risk of

Severe Arrhythmic Events and Beta-Blocker Therapy


Jons et al. J Am Coll Cardiol 2010; 55: 783-8

Medizinische Fakultät Mannheim der Universität Heidelberg

UMM UNIVERSITÄTSMEDIZIN MANNHEIM

Risk Stratification in the Long-QT Syndrome

Figure 1. Kaplan–Meier Estimates of Survival Free of Cardiac Events among the 580 Patients with the Long-QT Syndrome in the Risk-Stratification Analysis, According to the Genetic Locus of the Mutation.

The difference among the groups was significant (P=0.007 by the log-rank test).

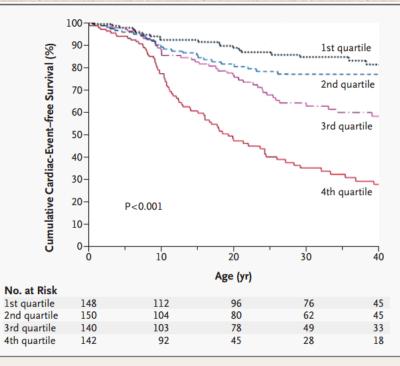


Figure 2. Kaplan–Meier Estimates of Cumulative Survival Free of Cardiac Events among the 580 Patients with the Long-QT Syndrome in the Risk-Stratification Analysis, According to the Quartile of the QT Interval Corrected for Heart Rate (QTc).

The four quartiles of QTc were as follows: first, 446 msec or less; second, 447 to 468 msec; third, 469 to 498 msec; and fourth, more than 498 msec. The difference among the quartiles was significant (P<0.001).

Priori et al. N Engl J Med 2003; 348:1866-74

Risk of death in the LQTS when a sibling has died

Table 2 Risk of aborted cardiac arrest or LQT-related death				
	Hazard ratio	95% confidence interval	<i>P</i> value	
$QTc \ge 0.53 \text{ s} : QTc < 0.53 \text{ s}$ Syncope 0-2 years : no	2.54 11.26	1.91–3.37 8.00–15.84	<0.01 <0.01	
syncope Syncope >2 years : no syncope	3.26	2.21-4.81	<0.01	
Beta-blocker ICD implantation Death of sibling	0.47 0.13 1.14	0.32-0.68 0.02-0.96 0.72-1.79	<0.01 0.045 0.58	


Gender and gender \times time covariates were also included in the models. ICD = implantable cardioverter-defibrillator; LQT = long QT.

Kaufman et al. Heart Rhythm 2008; 5: 831-6

Proposed risk stratification scheme for aborted cardiac arrest or sudden cardiac death in LQT1 and LQT2 patients

Barsheshet et al. Ann Noninvasive Electrocardiol. 2013; 18: 499-509.

der Universität Heidelberg

Risk stratification and management in LQTS (1)

Recommendatio	ns	Class ^a	Level ^b
 (http://www.cr (b) Correction of abnormalities (hypomagnesae that may occur diarrhoea, vom conditions. (c) Avoidance o triggers for arr swimming, esp 	I patients with a QT-prolonging drugs ediblemeds.org). electrolyte hypokalaemia, mia, hypocalcaemia)		B

Priori et al. Eur Heart J 2015: doi:10.1093/eurheartj/ehv316

Risk stratification and management in LQTS (2)

1.	Recommendations	Class ^a	Level ^b
第二人王二川二	Beta-blockers are recommended in patients with a clinical diagnosis of LQTS.	I	В
1	ICD implantation with the use of beta- blockers is recommended in LQTS patients with previous cardiac arrest.	I	B

Priori et al. Eur Heart J 2015: doi:10.1093/eurheartj/ehv316

Medizinische Fakultät Mannheim der Universität Heidelberg

Risk stratification and management in LQTS (3)

The second	Recommendations	Class ^a	Level ^b
人であるという	Beta-blockers should be considered in carriers of a causative LQTS mutation and normal QT interval.	lla	B
Naugure Contraction of Nav	ICD implantation in addition to beta-blockers should be considered in LQTS patients who experienced syncope and/or VT while receiving an adequate dose of beta-blockers.	lla	B

Priori et al. Eur Heart J 2015: doi:10.1093/eurheartj/ehv316

Risk stratification and management in LQTS (4)

Recommendations	Class ^a	Level ^b
 Left cardiac sympathetic denervation should be considered in patients with symptomatic LQTS when (a) Beta-blockers are either not effective, not tolerated or contraindicated; (b) ICD therapy is contraindicated or refused; (c) Patients on beta-blockers with an ICD experience multiple shocks. 	lla	C

Priori et al. Eur Heart J 2015: doi:10.1093/eurheartj/ehv316

Risk stratification and management in LQTS (5)

100 H 100	Recommendations	Class ^a	Level ^b
	Sodium channel blockers (mexiletine, flecainide or ranolazine) may be considered as add-on therapy to shorten the QT interval in LQTS3 patients with a QTc >500 ms.	ШΒ	С
	Implant of an ICD may be considered in addition to beta-blocker therapy in asymptomatic carriers of a pathogenic mutation in <i>KCNH</i> 2 or <i>SCN5A</i> when QTc is >500 ms.	Шb	С

Priori et al. Eur Heart J 2015: doi:10.1093/eurheartj/ehv316

Diagnosis of LQTS (1)

Recommendations	Class ^a	Level ^b
LQTS is diagnosed with either – QTc ≥480 ms in repeated 12-lead ECGs or – LQTS risk score >3	I	С

Priori et al. Eur Heart J 2015: doi:10.1093/eurheartj/ehv316

der Universität Heidelberg

Diagnosis of LQTS (2)

Recommendations	Class ^a	Level ^b
LQTS is diagnosed in the pres confirmed pathogenic LQTS n irrespective of the QT duratic	nutation, I	с
ECG diagnosis of LQTS should considered in the presence of ≥460 ms in repeated 12-lead patients with an unexplained s episode in the absence of seco causes for QT prolongation.	a QTc ECGs in yncopal	С

Priori et al. Eur Heart J 2015: doi:10.1093/eurheartj/ehv316 Medizinische Fakultät Mannheim

der Universität Heidelberg

