



# Don't believe everything! Read carefully! All that glitters is *not* gold!



TURIN

 $24^{\text{th}}-26^{\text{th}}$ 

2019

Fabio Barili, M.D., Ph.D., M.Stat., F.E.S.C.

Staff surgeon | Department of Cardiac Surgery, S. Croce Hospital, Cuneo, Italy.

Vice-Director | Scientific Committee of the Italian Society of Cardiac Surgery

Director | Task force of Methodology, the European Association of Cardio-Thoracic Surgery

Deputy Statistical Editor | The Journal of Thoracic and CardioVascular Surgery







# **Disclosures**

## FB receives consulting fees from Abbott Medical



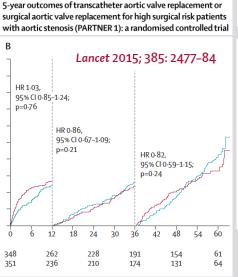


# **Background (1)**

## The indication for TAVI was expanded to intermediate risk patients on the basis of the major trials

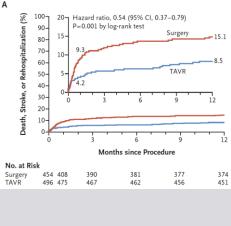
| - I | с |
|-----|---|
| I.  | с |
| 1   | в |
| 1   | В |
| i.  | в |
| ПЬ  | с |
| ШЬ  | с |
|     |   |

Available data from randomized controlled trials and large registries in elderly patients at increased surgical risk show that TAVI is superior in terms of mortality to medical therapy in extreme-risk patients,<sup>91</sup> non-inferior or superior to surgery in high-risk patients<sup>94–97</sup> and noninferior to surgery and even superior when transfemoral access is possible in intermediate-risk patients.<sup>98–102</sup> In the two large studies on intermediate risk, the mean ages of patients were 82 and 80 years,<sup>99,102</sup> mean STS scores were 5.8% and 4.5%<sup>99,102</sup> and a high percentage were considered frail. Thus the results are valid only for comparable patient groups. Overall, rates of vascular complications, pacemaker









# Background (1)

# TAVI, what's happening at follow-up?



## **TRIALS SAY OK**

Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients



#### HR (95% CI) Tria DADTNED 14 0.90 (0.71 - 1.15) US CoreValue high re 0.79 (0.61 - 1.01) 0.72 (0.33 - 1.59) PARTNER 24 0.92 (0.74 - 1.13) 0.98 (0.72 - 1.34) 0.41 (0.14 - 1.17) PARTNER Evolut low risk 0.83 (0.41 - 1.67) 0 88 (0 78 - 0 99) 0.03 maeneity =2<0.001 n = 0.727 0.5 Favours TAV .0% for high-, intermediate-, and low surgical risk trials, respectively. Transcatheter aortic valve implantation wa ed with a significant reduction of all-cause mortality compared to SAVR (hazard ratio [HR] 0.88 [95% confiace interval (CI) 0.78-0.991, P=0.030; an effect that was conistent across the entire spe scatheter aortic valve implantatio European Heart Journal (2019) 0, 1-11 vs. surgical aortic valve replacement for ent of symptomatic severe a osis: an updated meta-analysis

### META SAY "WOW"



In a new study, use of transcatheter rather than surgical aortic valve replacement (TAVR/SAVR) reduced the risk of early death in low-risk patients with severe aortic stenosis, calling into question whether TAVR should be the preferred option.

In the pooled analysis of 4 randomized trials involving 2887 patients at low surgical risk, the 1-year risks with TAVR and SAVR for all-cause death were 21% vs 3.5% (relative risk [RR], 0.6f; 95% CI, 0.39 - 0.96) and were 1.6% vs 2.9% for cardiovascular death (RR, 0.55; 95% CJ, 0.33 - 0.90).

The magnitude of relative risk reduction was similar in the recently reported pivotal PARTNER 3 and Evolut Low Risk trials, which were included in this study along with the 2015 NOTION trial and a post-hoc SURTAVI analysis. The four trials have shown TAVR is noninferior or superior to SAVR on composite primary endpoints that included mortality; however, none were adequately powered to detect mortality differences in and of themselves, the authors reported in the September 24 issue of the *Journal of the American College of Cardiology*.



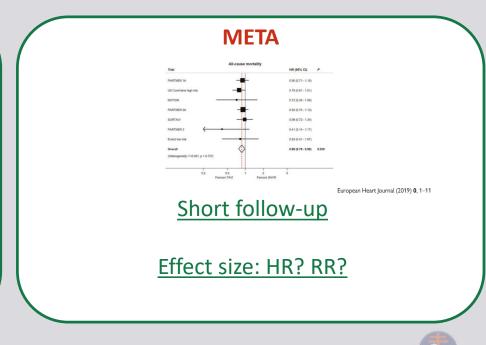
# Top of the pyramid of evidence! But...







**Background (1)** 


# ...there could be some limitations!

## **RC TRIALS**

<u>Composite outcomes</u>: underpowered for singular outcomes

Not homogeneous definition of outcomes (neurologic event,...)

Sponsorship: could it be a bias?





# **Background (2)**

### Prospective randomized studies are mainly made by companies

Surveys of randomized trials published between 1990 and 2000 raised awareness in the medical community that trials funded by for-profit organizations were more likely to report positive findings than those funded by not-for-profit organizations.

Contemporary data has confirmed that incentives surrounding for-profit organizations have the potential to influence clinical trial outcomes.

| Table 2. Proportion of Trials Significantly Favoring Newer Treatments Over Standard of No./Total % |                             |                                              |                            |                |  |  |  |
|----------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------|----------------------------|----------------|--|--|--|
| Trials                                                                                             | Not-for-Profit<br>(n = 104) | Not-for-Profit<br>and For-Profit<br>(n = 62) | For-Profit<br>(n = 137)    | P<br>for Trend |  |  |  |
| All                                                                                                | 51/104 (49.0)               | 35/62 (56.5)                                 | 92/137 (67.2)              | .005           |  |  |  |
| Clinical end points                                                                                | 19/55 (34.6)                | 24/44 (54.6)                                 | 64/96 (66.7)               | <.001          |  |  |  |
| Drug                                                                                               | 17/43 (39.5)                | 24/46 (54.4)                                 | 74/113 (65.5)              | .002           |  |  |  |
| Device                                                                                             | 4/8 (50.0)                  | 9/13 (69.2)                                  | 14/17 <mark>(</mark> 82.4) | .07            |  |  |  |



Attempts to explain this phenomenon have focused largely on design bias, interpretation bias, data suppression, and differential data quality.

Reported Outcomes in Major Cardiovascular Clinical Trials Funded by For-Profit and Not-for-Profit Organizations: 2000-2005 JAMA. 2006;295:2270-2274







# LET'S SEE

# OUTCOMES

# LANDMARK

# **INCLUSION CRITERIA**

# POTENTIAL BIAS FOR MISCLASSIFICATION

# **PROPENSITY SCORE**

**META-ANALYSIS OF HRs** 







TURIN October 24<sup>th</sup>-26<sup>th</sup> 2019

Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2

# **OUTCOMES**

## **PRIMARY OUTCOMES IN TAVI/SAVR RANDOMIZED STUDIES**

## What it is suggested by guidelines

|                                                                                                                                  |                     | consensus document* (J Thorac Cardiovasc Surg 2013;145:6-23)                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Guidelines for reporting mortality and morbidity after<br>cardiac valve interventions<br>J Thorac Cardiovasc Surg 2008;135:732-8 | COMPOSITE ENDPOINTS | TABLE 11. Composite endpoints Device success                                                                                                                                                                                                                                                                                                        |
| MORTALITY                                                                                                                        | LANDMARK AT 30-day  | Absence of procedural mortality AND<br>Correct positioning of a single prosthetic heart valve into the proper<br>anatomical location AND<br>Intended performance of the prosthetic heart valve (no prosthesis–<br>patient mismatch* and mean aortic valve gradient <20 mm Hg or<br>peak velocity <3 m/s, AND no moderate or severe prosthetic valve |
| Valve—related                                                                                                                    |                     | regurgitation*)<br>Early safety (at 30 days)                                                                                                                                                                                                                                                                                                        |
| Cardiac                                                                                                                          |                     | All-cause mortality<br>All stroke (disabling and nondisabling)                                                                                                                                                                                                                                                                                      |
|                                                                                                                                  |                     | Life-threatening bleeding<br>Acute kidney injury—Stage 2 or 3 (including renal replacement                                                                                                                                                                                                                                                          |
| All cause                                                                                                                        |                     | therapy)                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                  |                     | Coronary artery obstruction requiring intervention<br>Major vascular complication                                                                                                                                                                                                                                                                   |
|                                                                                                                                  |                     | Valve-related dysfunction requiring repeat procedure (BAV, TAVI, or                                                                                                                                                                                                                                                                                 |
| MORBIDITY                                                                                                                        |                     | SAVR)<br>Clinical efficacy (after 30 days)                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                  |                     | All-cause mortality                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                  |                     | All stroke (disabling and nondisabling)<br>Requiring hospitalizations for valve-related symptoms or worsening                                                                                                                                                                                                                                       |
| Structural valve deterioration                                                                                                   |                     | congestive heart failure†                                                                                                                                                                                                                                                                                                                           |
| Non-structural dysfunction                                                                                                       |                     | NYHA class III or IV                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                  |                     | Valve-related dysfunction (mean aortic valve gradient $\geq$ 20 mm Hg,<br>EOA $\leq$ 0.9–1.1 cm <sup>2</sup> ‡ and/or DVI <0. 35 m/s, AND/OR moderate or                                                                                                                                                                                            |
| Thrombosis                                                                                                                       |                     | severe prosthetic valve regurgitation*)                                                                                                                                                                                                                                                                                                             |
| Embolism                                                                                                                         |                     | Time-related valve safety<br>Structural valve deterioration                                                                                                                                                                                                                                                                                         |
|                                                                                                                                  |                     | Valve-related dysfunction (mean aortic valve gradient $\geq$ 20 mm Hg,                                                                                                                                                                                                                                                                              |
| Bleeding                                                                                                                         |                     | EOA $\leq 0.9$ -1.1 cm <sup>2</sup> $\ddagger$ and/or DVI $< 0.35$ m/s, AND/OR moderate                                                                                                                                                                                                                                                             |
| Endocarditis                                                                                                                     |                     | or severe prosthetic valve regurgitation*)<br>Requiring repeat procedure (TAVI or SAVR)                                                                                                                                                                                                                                                             |
|                                                                                                                                  |                     | Prosthetic valve endocarditis                                                                                                                                                                                                                                                                                                                       |
| Redo                                                                                                                             |                     | Prosthetic valve thrombosis<br>Thrombo-embolic events (eg, stroke)                                                                                                                                                                                                                                                                                  |
|                                                                                                                                  |                     | VARC bleeding, unless clearly unrelated to valve therapy (eg, trauma)                                                                                                                                                                                                                                                                               |



# **Outcomes**

# PRIMARY OUTCOMES INTAVI/SAVR RANDOMIZED STUDIES

|                     | <b>PARTNER 1A</b> (6)     | CoreValve HR (7)               | <b>PARTNER 2A</b> (10)                               | NOTION (9)                                                                    | SURTAVI (8)                                          |
|---------------------|---------------------------|--------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|
| Time of recruitment | May 2007–August 2009      | February 2011–December<br>2012 | December 2011<br>-November 2013                      | December 2009-April<br>2013                                                   | June 2012 – June 2016                                |
| THV                 | SAPIEN                    | CoreValve                      | SAPIEN XT                                            | CoreValve                                                                     | CoreValve                                            |
| Primary e ndpoint   | All-cause death at 1 year | All-cause death at 1 year      | All-cause death or<br>diasbling stroke at 2<br>years | All-cause death,<br>disabling stroke or<br>myocardial infarction at 1<br>year | All-cause death or<br>disabling stroke at 2<br>years |

Front. Cardiovasc. Med. 5:92. doi: 10.3389/fcvm.2018.00092

Composite endpoints different among studies and from guidelines

Durability at two years? What about valve-related death?

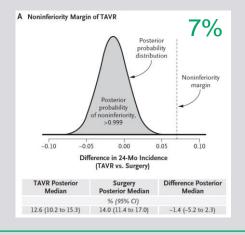
Landmark at 30-days? (Does the risk profile change over time?)







## **Outcomes**


## **EX: SURTAVI COMPOSITE OUTCOMES**

#### TRIAL END POINTS

The primary end point was a composite of <u>death</u> from any cause or disabling stroke at 24 months. (Trial end-point definitions are provided in Table S4 in the Supplementary Appendix.) Disabling stroke was defined according to the criteria of the Valve Academic Research Consortium-2 (VARC-2).<sup>10</sup> N Engl J Med 2017;376:1321-31.

| Outcome                                              |      | 30 Days |                          |      | 12 Month | s                        |      | 24 Months |                          |
|------------------------------------------------------|------|---------|--------------------------|------|----------|--------------------------|------|-----------|--------------------------|
|                                                      | TAVR | Surgery | 95% Credible<br>Interval | TAVR | Surgery  | 95% Credible<br>Interval | TAVR | Surgery   | 95% Credible<br>Interval |
|                                                      |      |         |                          |      | percent  |                          |      |           |                          |
| Death from any cause or disabling stroke             | 2.8  | 3.9     | -2.8 to 0.7              | 8.1  | 8.8      | -3.5 to 2.1              | 12.6 | 14.0      | -5.2 to 2.3              |
| Death from any cause                                 | 2.2  | 1.7     | -0.9 to 1.8              | 6.7  | 6.8      | -2.7 to 2.4              | 11.4 | 11.6      | -3.8 to 3.3              |
| Cardiovascular                                       | 2.0  | 1.7     | -1.0 to 1.6              | 4.8  | 5.5      | -2.9 to 1.5              | 7.7  | 8.0       | -3.3 to 2.6              |
| Valve-related                                        | 0.1  | 0.1     | -0.3 to 0.3              | 0.1  | 0.3      | -0.7 to 0.3              | 0.2  | 0.4       | -0.9 to 0.5              |
| Aortic-valve reintervention                          | 0.9  | 0.2     | -0.1 to 1.4              | 2.1  | 0.5      | 0.4 to 2.7               | 2.8  | 0.7       | 0.7 to 3.5               |
| All stroke and TIA                                   | 4.5  | 6.5     | -4.2 to 0.3              | 8.2  | 8.6      | -3.1 to 2.4              | 10.0 | 11.0      | -4.2 to 2.2              |
| All stroke                                           | 3.4  | 5.6     | -4.2 to -0.2             | 5.4  | 6.9      | -3.9 to 0.9              | 6.2  | 8.4       | -5.0 to 0.4              |
| Disabling                                            | 1.2  | 2.5     | -2.6 to 0.1              | 2.2  | 3.6      | -3.1 to 0.4              | 2.6  | 4.5       | -4.0 to 0.1              |
| Nondisabling                                         | 2.2  | 3.1     | -2.5 to 0.6              | 3.7  | 3.9      | -2.2 to 1.7              | 4.4  | 4.7       | -2.6 to 1.9              |
| TIA                                                  | 1.5  | 1.1     | -0.7 to 1.5              | 3.2  | 2.0      | -0.4 to 2.8              | 4.3  | 3.1       | -0.9 to 3.2              |
| Myocardial infarction                                | 0.9  | 1.0     | -1.0 to 0.9              | 2.0  | 1.6      | -0.9 to 1.8              | 2.8  | 2.2       | -1.1 to 2.4              |
| Hospitalization for aortic-valve-<br>related disease | 2.9  | 4.2     | -3.1 to 0.5              | 8.5  | 7.6      | -1.8 to 3.6              | 13.2 | 9.7       | 0.1 to 7.0               |
| MACCE                                                | 5.7  | 7.4     | -4.0 to 0.7              | 13.2 | 12.8     | -2.9 to 3.7              | 18.6 | 18.6      | -4.2 to 4.2              |

We determined that TAVR would be declared noninferior to surgery for the primary outcome if the posterior probability of noninferiority with a margin of 0.07 was more than 0.971,







# **Outcomes**

# **EX: PARTNER 2A ENDPOINTS**

#### END POINTS

The primary end point was a nonhierarchical composite of death from any cause or disabling stroke at 2 years in the intention-to-treat population; all the patients were followed for at least

| Table 2. Clinical End Points at 30 Days, 1 Year, and 2 Years.* |                  |                       |         |                  |                     |         |                  |                     |         |
|----------------------------------------------------------------|------------------|-----------------------|---------|------------------|---------------------|---------|------------------|---------------------|---------|
| End Point                                                      |                  | At 30 Days            |         |                  | At 1 Year           |         |                  | At 2 Years          |         |
|                                                                | TAVR<br>(N=1011) | Surgery<br>(N = 1021) | P Value | TAVR<br>(N=1011) | Surgery<br>(N=1021) | P Value | TAVR<br>(N=1011) | Surgery<br>(N=1021) | P Value |
|                                                                | no. of pat       | ients (%)             |         | no. of pa        | tients (%)          |         | no. of pat       | ients (%)           |         |
| Death from any cause or disabling stroke                       | 62 (6.1)         | 80 (8.0)              | 0.11    | 145 (14.5)       | 160 (16.4)          | 0.24    | 192 (19.3)       | 202 (21.1)          | 0.33    |
| Death                                                          |                  |                       |         |                  |                     |         |                  |                     |         |
| From any cause                                                 | 39 (3.9)         | 41 (4.1)              | 0.78    | 123 (12.3)       | 124 (12.9)          | 0.69    | 166 (16.7)       | 170 (18.0)          | 0.45    |
| From cardiac causes                                            | 33 (3.3)         | 32 (3.2)              | 0.92    | 70 (7.1)         | 77 (8.1)            | 0.40    | 97 (10.1)        | 104 (11.3)          | 0.38    |
| Not from cardiac causes                                        | 6 (0.6)          | 9 (0.9)               | 0.41    | 53 (5.6)         | 47 (5.2)            | 0.71    | 69 (7.4)         | 65 (7.4)            | 0.98    |
| Neurologic event                                               |                  |                       |         |                  |                     |         |                  |                     |         |
| Any event                                                      | 64 (6.4)         | 65 (6.5)              | 0.94    | 99 (10.1)        | 93 (9.7)            | 0.76    | 121 (12.7)       | 103 (11.0)          | 0.25    |
| Transient ischemic attack                                      | 9 (0.9)          | 4 (0.4)               | 0.17    | 23 (2.4)         | 16 (1.8)            | 0.38    | 34 (3.7)         | 20 (2.3)            | 0.09    |
| Any stroke                                                     | 55 (5.5)         | 61 (6.1)              | 0.57    | 78 (8.0)         | 79 (8.1)            | 0.88    | 91 (9.5)         | 85 (8.9)            | 0.67    |
| Disabling stroke                                               | 32 (3.2)         | 43 (4.3)              | 0.20    | 49 (5.0)         | 56 (5.8)            | 0.46    | 59 (6.2)         | 61 (6.4)            | 0.83    |
| Nondisabling stroke                                            | 23 (2.3)         | 18 (1.8)              | 0.43    | 30 (3.0)         | 24 (2.5)            | 0.44    | 33 (3.4)         | 27 (2.9)            | 0.51    |
| Rehospitalization                                              | 64 (6.5)         | 62 (6.5)              | 0.99    | 142 (14.8)       | 135 (14.7)          | 0.92    | 183 (19.6)       | 156 (17.3)          | 0.22    |
| Death from any cause or rehospitalization                      | 99 (9.8)         | 101 (10.2)            | 0.78    | 234 (23.4)       | 225 (23.3)          | 0.97    | 303 (30.5)       | 281 (29.6)          | 0.67    |
| Death from any cause, any stroke, or rehospitalization         | 140 (13.9)       | 153 (15.3)            | 0.37    | 274 (27.4)       | 276 (28.3)          | 0.64    | 344 (34.6)       | 326 (33.9)          | 0.75    |
| Myocardial infarction                                          | 12 (1.2)         | 19 (1.9)              | 0.22    | 24 (2.5)         | 29 (3.0)            | 0.47    | 33 (3.6)         | 37 (4.1)            | 0.56    |
| Major vascular complication                                    | 80 (7.9)         | 51 (5.0)              | 0.008   | 84 (8.4)         | 54 (5.3)            | 0.007   | 86 (8.6)         | 55 (5.5)            | 0.006   |
| Life-threatening or disabling bleeding                         | 105 (10.4)       | 442 (43.4)            | <0.001  | 151 (15.2)       | 460 (45.5)          | <0.001  | 169 (17.3)       | 471 (47.0)          | <0.001  |
| Acute kidney injury                                            | 13 (1.3)         | 31 (3.1)              | 0.006   | 32 (3.4)         | 48 (5.0)            | 0.07    | 36 (3.8)         | 57 (6.2)            | 0.02    |
| New atrial fibrillation                                        | 91 (9.1)         | 265 (26.4)            | < 0.001 | 100 (10.1)       | 272 (27.2)          | < 0.001 | 110 (11.3)       | 273 (27.3)          | < 0.001 |
| New permanent pacemaker                                        | 85 (8.5)         | 68 (6.9)              | 0.17    | 98 (9.9)         | 85 (8.9)            | 0.43    | 114 (11.8)       | 96 (10.3)           | 0.29    |
| Endocarditis                                                   | 0                | 0                     | -       | 7 (0.8)          | 6 (0.7)             | 0.84    | 11 (1.2)         | 6 (0.7)             | 0.22 🦯  |
| Aortic-valve reintervention                                    | 4 (0.4)          | 0                     | 0.05    | 11 (1.2)         | 4 (0.5)             | 0.10    | 13 (1.4)         | 5 (0.6)             | 0.09    |

# Table II Composite endpoints Clinical efficacy (after 30 days) All eques montality

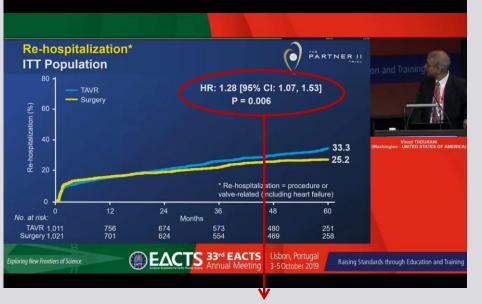
All-cause mortality
 All stroke (disabling and non-disabling)
 Requiring hospitalizations for valve-related symptoms or worsening congestive heart failure<sup>b</sup>
 NYHA class III or IV
 Valve-related dysfunction (mean aortic valve gradient ≥20 mmHg, EOA ≤0.9–1.1 cm<sup>2c</sup> and/or DVI <0. 35 m/s, AND/OR moderate or severe prosthetic valve regurgitation<sup>a</sup>)

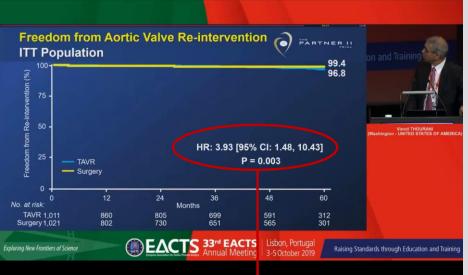
Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document<sup>1</sup>

#### Crude reoperation rate








TURIN October 24<sup>th</sup>-26<sup>th</sup> 2019

# **Outcomes**

# **5 YEARS OUTCOMES FROM THE PARTNER 2A TRIAL**





Hazard of Re-hospitalization at 5 years 28% higher in TAVI Hazard of Re-Intervention at 5 years 4 times higher in TAVI

**DURABILITY IS CRITICAL ISSUE ......** 





TURIN October 24<sup>th</sup>-26<sup>th</sup> 2019

# **Outcomes**

# ...BUT WE ARE FORGETTING IT!

TABLE 2 | Overview of currently active randomized trials on TAVI vs. SAVR in low to intermediate risk patients with severe aortic stenosis.

|                                    | DEDICATE                                                                                              | NOTION 2                                                          | PARTNER 3                                                    | CoreValve low risk                                         |                          |
|------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|--------------------------|
| Reference/NCT number               | Clinicaltrials.gov/NCT03112980                                                                        | Clinicaltrials.gov/NCT02825134                                    | Clinicaltrials.gov/NCT02675114                               | Clinicaltrials.gov/NCT02701283                             |                          |
| Study start date                   | 2017                                                                                                  | 2016                                                              | 2016                                                         | 2016                                                       | <b>—</b>                 |
| Study status                       | Recruiting                                                                                            | Recruiting                                                        | Recruiting                                                   | Recruiting                                                 | Feasibility              |
| Estimated study<br>completion date | 2024                                                                                                  | 2024                                                              | 2027                                                         | 2026                                                       |                          |
| Patients' risk profile             | STS-PROM 2-6%                                                                                         | Patient age $\leq$ 75 years and STS-PROM $<$ 4%                   | STS-PROM <4%                                                 | Operative risk <3%                                         | Safety                   |
| Study arms                         | TAVI* vs. SAVR* (1:1<br>randomization)                                                                | TAVI* vs. SAVR* (1:1<br>randomization)                            | TAVI (SAPIEN 3) vs. SAVR* (1:1<br>randomization)             | TAVI (CoreValve Evolut R) vs.<br>SAVR* (1:1 randomization) | ,                        |
| Estimated enrollment               | 1,600                                                                                                 | 992                                                               | 1,328                                                        | 1,200                                                      |                          |
| Primary Outcome                    | • Efficacy endpoint: Overall<br>survival at 5 years                                                   | All-cause mortality, myocardial<br>infarction or stroke at 1 year | All-cause mortality, stroke, or re-hospitalization at 1 year | All-cause mortality or disabling                           | Efficacy: Durability?    |
|                                    | <ul> <li>Safety endpoint: Overall<br/>survival at 1 year and 196<br/>deaths (event-driven)</li> </ul> |                                                                   |                                                              |                                                            |                          |
| Follow up time                     | 5 years                                                                                               | 1 year                                                            | 10 years                                                     | 10 years                                                   |                          |
|                                    |                                                                                                       | (22). Overall, the                                                | incidence of structural valv                                 | e degeneration and Front                                   | . Cardiovasc. Med. 5:92. |

(22). Overall, the incidence of structural valve degeneration and aortic valve re-intervention were low but will naturally become an issue as follow-up length and patient numbers increase. Recently published definitions of prosthesis degeneration may aid comprehensive analysis of this important topic (23, 24). To eliminate durability concerns after TAVI, very solid durability data available for surgical bioprostheses over the course of more than a decade will need to be matched (25).

Front. Cardiovasc. Med. 5:92. doi: 10.3389/fcvm.2018.00092



### TURIN October 24<sup>th</sup>-26<sup>th</sup> 2019

# **Outcomes**

# ....and the choice is driven by the sample size need

#### ORIGINAL ARTICLE

Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients



#### END POINTS

The primary end point was a composite o<u>f death</u> from any cause, stroke, or rehospitalization at 1 year after the procedure. All the patients unWhy use composites? The main advantage of this approach is increased statistical efficiency. By measuring more than one result and combining the data in a single outcome, researchers have an easier time showing a statistically significant difference between the treatment group and controls. This allows for studies that require fewer patients, take less time, and ultimately are more cost-effective. However, this approach can also open the door to misdirection and statistical sleight of hand.

# Problems with use of composite end points in cardiovascular trials: systematic review of randomised controlled trials

Conclusion The use of composite end points in cardiovascular trials is frequently complicated by large gradients in importance to patients and in magnitude of the effect of treatment across component end points. Higher event rates and larger treatment effects associated with less important components may result in misleading impressions of the impact of treatment.

# BMJ

### WHAT THIS STUDY ADDS

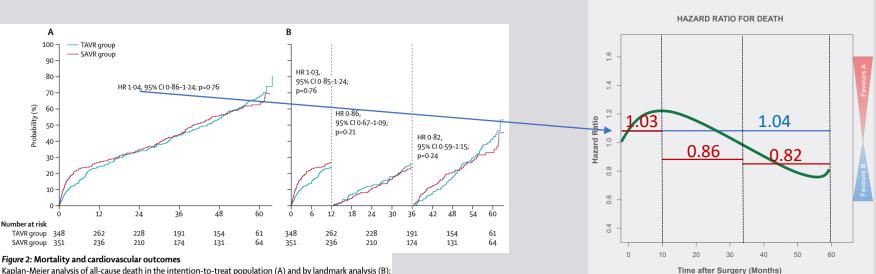
Almost half of a sample of recent prominently published cardiovascular trials used composite end points, which were often inadequately reported and showed large gradients in importance to patients

End points of least importance to patients typically contributed most events

Composite end points, as currently used in cardiovascular trials, may often be misleading






**TURIN** October  $24^{\text{th}}-26^{\text{th}}$ 2019

# **OUTCOMES & LANDMARK**

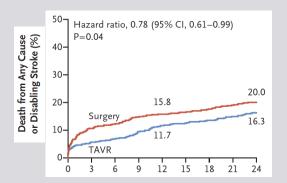
5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial Lancet 2015; 385: 2477-84

### WHY?

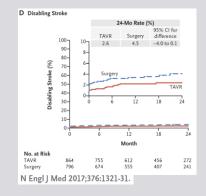
The assumption of hazardproportionality in COX was violated



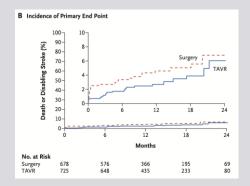
Kaplan-Meier analysis of all-cause death in the intention-to-treat population (A) and by landmark analysis (B);



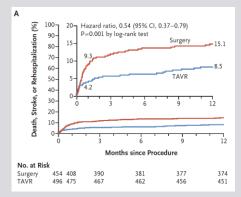



# **Outcomes: Landmark at 30 days**


### **PARTNER 2A ENDPOINTS**




### SURTAVI ENDPOINTS



### **EVOLUT R ENDPOINTS**



### **PARTNER 3 ENDPOINTS**



## NO LANDMARKING HAS BEEN PERFORMED....

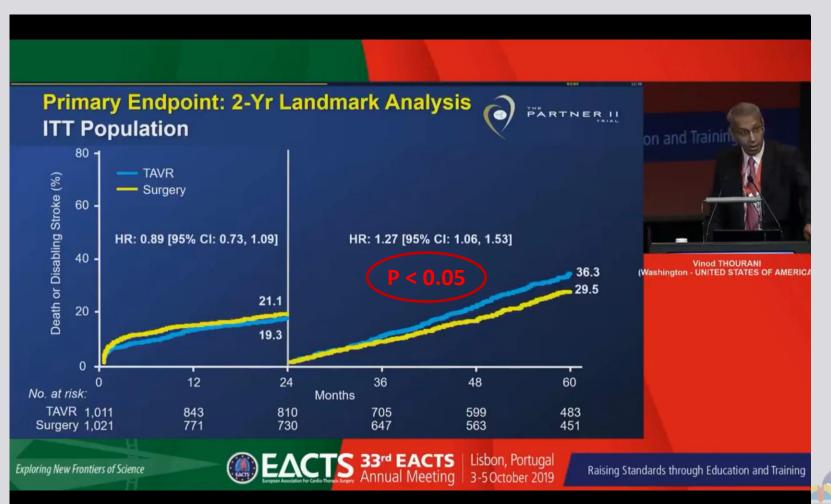
Differences are in the 30 day-2 months

**CURVES ARE PARALLEL AFTER A COUPLE OF MONTHS** 

**PROPORTIONALITY OF HAZARDS COULD BE NOT RESPECTED** 



**TURIN** 


October 24<sup>th</sup>-26<sup>th</sup>

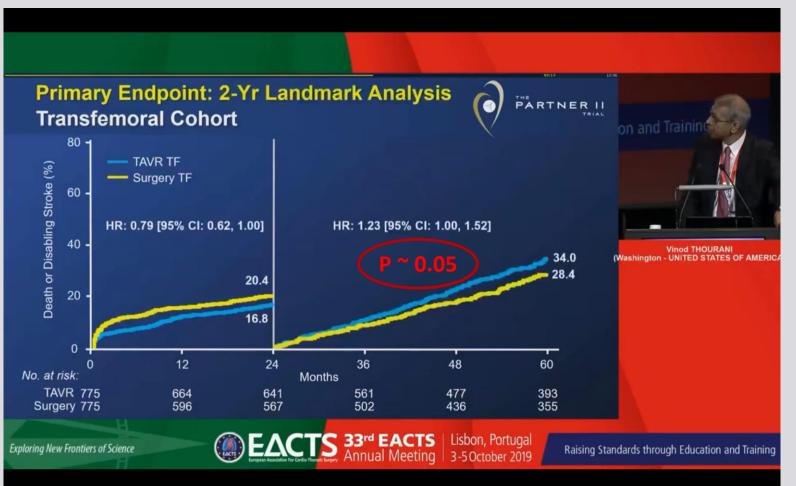
2019



### TURIN October 24<sup>th</sup>-26<sup>th</sup> 2019

# **Outcomes: Landmark Analysis at follow-up**

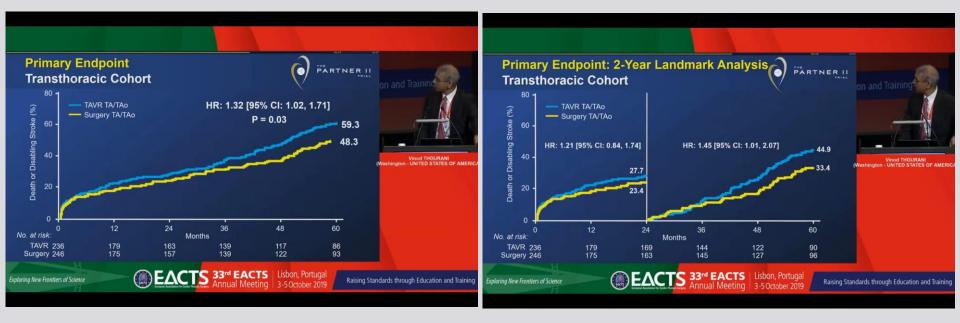





**TURIN** 

October 24<sup>th</sup>-26<sup>th</sup>

2019


# **Outcomes: Landmark Analysis at follow-up**





TURIN October 24<sup>th</sup>-26<sup>th</sup> 2019

# **Outcomes: Landmark Analysis at follow-up**









# **INCLUSION CRITERIA**

Randomization, when properly conducted, avoids bias by distributing both known and unknown

patient characteristics between the experimental conditions on the basis of the play of chance.

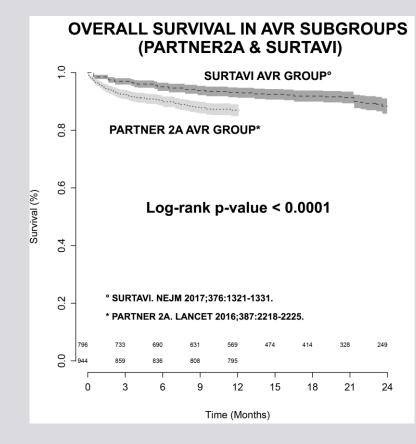
BMJ 2013;347:f6409 doi: 10.1136/bmj.f6409 (Published 11 November 2013)

# **ASSOCIATED PROCEDURES | TREATMENT GROUPS**

| PARTNER 2 Trial SURTAVI Trial |                                | EVOLUT R Trial   |       | PARTNER 3 Trial  |       |                  |       |
|-------------------------------|--------------------------------|------------------|-------|------------------|-------|------------------|-------|
| Surgery                       | 9.1% concomitant<br>14.5% CABG | Surgery          | 27.8% | Surgery          | 26.2% | Surgery          | 26.4% |
| TAVR                          | 3.9% PCI                       | TAVR             | 14.5% | TAVR             | 6.9%  | TAVR             | 7.9%  |
| P-value < 0.0001              |                                | P-value < 0.0001 |       | P-value < 0.0001 |       | P-value < 0.0001 |       |

## **ASSOCIATED PCI/CABG | TREATMENT GROUPS**

| PARTNER 2 Trial            | SURTAVI Trial               | EVOLUT R Trial                   | PARTNER 3 Trial            |
|----------------------------|-----------------------------|----------------------------------|----------------------------|
| Surgery 14.5%<br>TAVR 3.9% | Surgery 22.1%<br>TAVR 14.5% | Surgery 13.6%<br>TAVR 6.9%       | Surgery 12.8%<br>TAVR 6.5% |
| P-value < 0.0001           | P-value < 0.0001            | <mark>P-value &lt; 0.0001</mark> | P-value 0.0012             |


# **HOMOGENEOUS GROUPS?**







# Are the surgical arms homogeneous?





**TURIN** 

October 24<sup>th</sup>-26<sup>th</sup>

2019





TURIN October 24<sup>th</sup>-26<sup>th</sup> 2019

# **OTHER POTENTIAL BIASES? DATA MISCLASSIFICATION?**



#### News > Medscape Medical News

### Deaths Linked to Transcatheter Valve Cases May Be 'Underreported'

Batya Swift Yasgur MA, LSW October 15, 2019



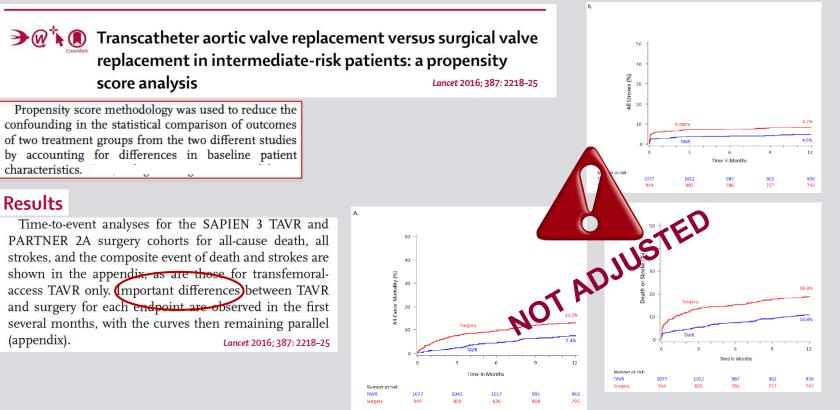
Deaths associated with some transcatheter valve-repair procedures may be underreported in a US Food and Drug Administration (FDA) adverse events database, leaving a misleading picture of the number of associated fatalities, a new report suggests.

It found that <u>17.5%</u> of deaths associated with the *SAPIEN 3* (Edwards Lifesciences) transcatheter valve and 24.7% of those associated with *MitraClip* (Abbott Vascular) were misclassified as "injury" or "malfunction" events in the FDA's Manufacturer and User Facility Device Experience (MAUDE) database.

"We found that a significant number of deaths associated with these high-risk cardiac devices were not correctly classified," senior author Rita F. Redberg, MD, MSc, told *theheart.org* / *Medscape Cardiology.* 

"Therefore, clinicians, patients, or anyone searching MAUDE — the primary source for adverse event data — to determine how many deaths were reported associated with these devices would get an <u>erroneously low number</u> for deaths reported to MAUDE, which is already only a small fraction of all adverse events, as most are not reported to MAUDE," said Redberg, from the University of California, San Francisco.

17.5% of DEATHS MISCLASSIFICATED


## MAUDE: ERRONEOUSLY LOW NUMBER OF REPORTED DEATHS







# **PS STUDY ON TAVI vs SAVR: A QUASI-RANDOMIZED STUDY?**



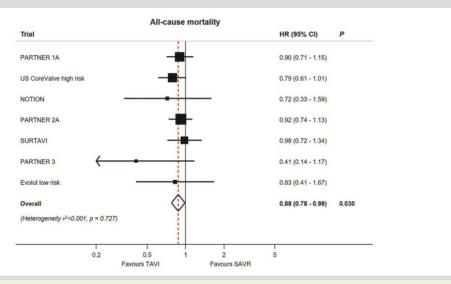
Appendix Figure 4. Time to Event Curves for A. All-Cause mortality, B. All Stroke, C. Composite of allcause mortality and stroke



**TURIN** 

October 24<sup>th</sup>-26<sup>th</sup>

2019






# **META-ANALYSIS. TOP OF PYRAMID OF EVIDENCE!**

Transcatheter aortic valve implantation vs. surgical aortic valve replacement for treatment of symptomatic severe aortic stenosis: an updated meta-analysis

European Heart Journal (2019) **0**, 1–11 doi:10.1093/eurheartj/ehz275



**Conclusion** Compared with SAVR, TAVI is associated with reduction in all-cause mortality and stroke up to 2 years irrespective of baseline surgical risk and type of THV system.

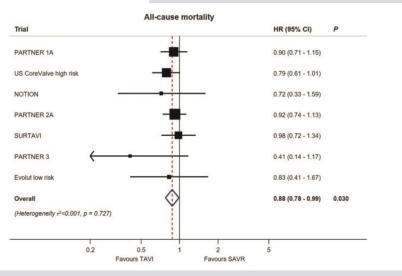


TURIN

October 24<sup>th</sup>-26<sup>th</sup>

2019

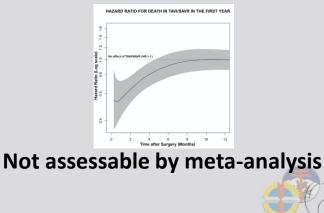





TURIN October 24<sup>th</sup>-26<sup>th</sup> 2019

# **META-ANALYSIS. TOP OF PYRAMID OF EVIDENCE!**

Transcatheter aortic valve implantation vs. surgical aortic valve replacement for treatment of symptomatic severe aortic stenosis: an updated meta-analysis


European Heart Journal (2019) **0**, 1–11 doi:10.1093/eurheartj/ehz275



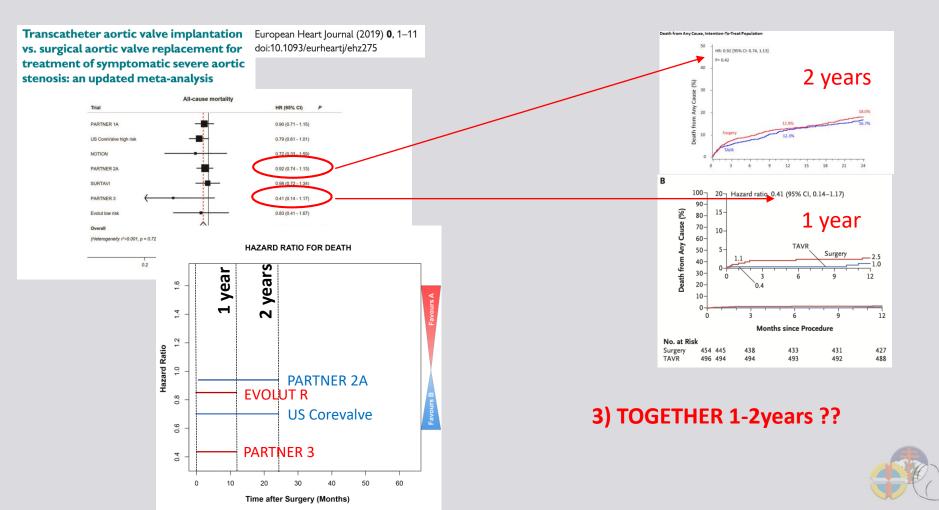
## 1) HRs and RR together?

ciple and utilized as-treated data, if ITT data were unavailable. Hazard ratios took precedence over risk ratios (RRs) to incorporate time-toevent data and allow for censoring. We derived RR using the number of events and participants in each treatment group when HR were unavailable. Disagreements between reviewers were resolved through consensus or third-party adjudication.

## 2) Proportionality of Hazards?








**TURIN** 

October 24<sup>th</sup>-26<sup>th</sup>

2019

# **META-ANALYSIS. TOP OF PYRAMID OF EVIDENCE!**







# CONCLUSIONS

# ARE YOU SURE THAT EVERYTHING THAT GLITTERS IS GOLD????

# New perspectives: transcatheter aortic valve implantation in the year 2020

In 2020 transcatheter aortic valve implantation (TAVI) will be the default treatment in patients with aortic stenosis European Heart Journal (2015) **36**, 1200–1206

Why is this the case? Because more than half a million patients will have been treated by this technique worldwide, allowing its efficacy, safety, and durability to be assessed.

As a consequence of these good results of TAVI shown in randomized trials such as PARTNER 2 and SURTAVI and also in large dynamic registries, the technique will be performed in intermediate, and probably, low-risk patients'. Surgical valve replacement will be limited to patients with a contraindication to TAVI or those who need combined cardiac or aortic surgery.



 The current findings at 5 years mandate re-examination at later timepoints; follow-up has been extended in PARTNER 2A to 10 years