

Atrial fibrillation something more to learn? Catheter ablation or antiarrhythmic drugs 20 years later R. De Ponti

Department of Heart & Vessels Ospedale di Circolo e Fondazione Macchi University of Insubria, Varese, Italy

TURIN

October 24th-26th

2019

Conflict of interest disclosure

•Dr. De Ponti has received :

-lecture fees from Biosense Webster and Biotronik

His Institution has received:

-educational grants from Medtronic, Biotronik, Boston Scientific, Abbott, Biosense Webster, Bayer, Pfizer and Boehringer Ingelheim

-research grant from Actelion

Comparison of rate control and rhythm control in pts with AF: AFFIRM study

RATE VERSUS RHYTHM CONTROL FOR ATRIAL FIBRILLATION

TABLE 3. ADVERSE EVENTS.* RATE-CONTROL RHYTHM-CONTROL OVERALL GROUP GROUP EVENT (N = 4060)(N=2027) (N=2033) P VALUE no. of patients (%) Primary end point (death) 0.08† 310 (25.9) 666 (26.3) 356 (26.7) 445 (32.0) Secondary end point (composite of death, disabling 861 (32.3) 416 (32.7) stroke, disabling anoxic encephalopathy, major bleeding, and cardiac arrest) 0.007 Torsade de pointes 14(0.5)2(0.2)‡ 12(0.8)Sustained ventricular tachycardia 15(0.6)9 (0.7) 6 (0.6) Cardiac arrest followed by resuscitation Ventricular fibrillation or ventricular tachycardia 19 (0.6) 10(0.7)9(0.5)0.83 Pulseless electrical activity, bradycardia, or other 10 (0.3) 1 (< 0.1)9 (0.6) 0.01 rhythm Central nervous system event 211 (8.2) 105 (7.4) 106 (8.9) 0.93 Total Ischemic stroke§ 157 (6.3) 77 (5.5) 80 (7.1) 0.79 25 After discontinuation of warfarin 69 44 During warfarin but with INR <2.0 27 17 44 42 25 Concurrent atrial fibrillation 67 Primary intracerebral hemorrhage 34(1.2)18(1.1)16(1.3)0.73 Subdural or subarachnoid hemorrhage 11 (0.8) 13 (0.8) 0.68 24(0.8)Disabling anoxic encephalopathy 9 (0.3) 4(0.2)5(0.4)0.74Myocardial infarction 140 (5.5) 67 (4.9) 73 (6.1) 0.60 Hemorrhage not involving the central nervous system 203 (7.3) 107 (7.7) 96 (6.9) 0.44Systemic embolism 16(0.5)9(0.5)7(0.4) 0.62 Pulmonary embolism 8 (0.3) 2(0.1)6 (0.5) Hospitalization after base line 2594 (76.6) 1220 (73.0) 1374 (80.1) < 0.001

*Percentages were derived from a Kaplan-Meier analysis. P values were derived from the log-rank statistic.

Wyse et al. NEJM 2002

Comparison of rate control and rhythm control in pts with AF: AFFIRM study

TABLE 4. ADDITIONAL ADVERSE EVENTS OR CLINICAL FINDINGS PROMPTING DISCONTINUATION OF A DRUG.*

Event	OVERALL (N=4060)	RATE- CONTROL GROUP (N=2027)	RHYTHM- Control Group (N=2033)	P Valuet
	no	. of patients (%)	
Congestive heart failure	79 (2.4)	37 (2.1)	42 (2.7)	0.58
Pulmonary event	132 (4.6)	24 (1.7)	108 (7.3)	< 0.001
Gastrointestinal event	162 (5.0)	35 (2.1)	127 (8.0)	< 0.001
Bradycardia	169 (5.1)	64 (4.2)	105 (6.0)	0.001
Prolongation of the corrected QT interval (>520 msec)	35 (1.1)	4 (0.3)	31 (1.9)	< 0.001
Other	590 (19.8)	176 (14.0)	414 (25.4)	< 0.001

*Percentages were derived from a Kaplan-Meier analysis.

†P values were based on the log-rank statistic.

Wyse et al. NEJM 2002

Relationship between SR, treatment, and survival in the AF follow-up investigation of rhythm management (AFFIRM) study

TABLE 2. Covariates Significantly Associated With Survival Results With Echocardiographic Data Included

			HR: Confic Lin	dence
Covariate	Р	HR	Lower	Upper
Age at enrollment*	< 0.0001	1.06	1.05	1.08
Coronary artery disease	< 0.0001	1.56	1.20	2.04
Congestive heart failure	< 0.0001	1.57	1.18	2.09
Diabetes	< 0.0001	1.56	1.17	2.07
Stroke or transient ischemic attack	< 0.0001	1.70	1.24	2.33
Smoking	< 0.0001	1.78	1.25	2.53
Left ventricular dysfunction	0.0065	1.36	1.02	1.81
Mitral regurgitation	0.0043	1.36	1.03	1.80
Sinus rhythm	< 0.0001	0.53	0.39	0.72
Warfarin use	< 0.0001	0.50	0.37	0.69
Digoxin use	0.0007	1.42	1.09	1.86
Rhythm-control drug use	0.0005	1.49	1.11	2.01

*Per year of age.

Corley et al., Circulation 2004

Rate vs. rhythm control: mainteance of sinus rhythm at the end of the study

Trial	Population	Rate control	Rhythm control	Sinus rhythm at study end
AFFIRM ⁸ (n=4060)	Age>65	Digoxin (71%)	Amiodarone (63%)	Rhythm (63%)
	Other stroke risk factors	BB (68%)	Sotalol (41%)	Rate (35%)
		CCB (46%)	Propafenone (15%)	
HOT-CAFÉ ^{9,10} (n=205)	Persistent AF	BB (89%)	Amiodarone (57%)	Rhythm (64%)
	CCB (8%)	Propafenone (37%)		Rate (not specified)
	Digoxin (43%)	Sotalol (24%)		
$PIAF^{11}$ (n=252)	Persistent AF	BB (9%)	Amiodarone (100%)	Rhythm (56%)
		Digoxin (7%)		Rate (10%)
		CCB (100%)		
$RACE^{12}$ (n=522)	Persistent or recurrent AF/AFL	Not specified	Sotalol (initial agent)	Rhythm (39%)
		-	-	Rate (10%)
$STAF^{13}$ (n=200)	Persistent AF	BB (45%)	Amiodarone (42%)	Rhythm (38%)
		CCB (22%)	Sotalol (22%)	Rate (9%)
		Digoxin (75%)	Class 1 (12%)	
AF-CHF ¹⁴ (n=1376)	Persistent AF	*BB (88%)	*Amiodarone (82%)	Rhythm (73%)
	Ejection Fraction	*Amiodarone (7%)	*Sotalol(2%)	Rate (30-41%)
	(<35%)	*CCB (3%)	*Dofetilide (<1%)	

Table 1. Clinical Trials for AF Evaluating Rate Versus Rhythm

*Medication use at 12 months

Abbreviations: BB (beta adrenergic blocker), CCB (calcium channel blocker)

Bunch et al., J Gen Intern Med 2010

Rhythm control vs. rate control for AF & HF

Italian survey on atrial fibrillation management

Table 3

Clinical characteristics stratified by treatment strategy assignment

Characteristic		Rhythm Control $= 2,643; 43.8\%$)	Rate Control $(n = 3,310; 54.8\%)$)
Age (yrs)				
15-50				
Male		141 (5.3)	36 (1.1)	
Female		44 (1.7)	15 (0.5)	
51-65				
Male		323 (12.2)	196 (5.9)	
Female		204 (7.7)	134 (4.0)	
66-75				
Male		406 (15.4)	408 (12.3)	
Female		386 (14.6)	393 (11.9)	
76-85				
Male	In rhythm	395 (15)	618 (18.7)	In rate
Female	control:	469 (17.7)	758 (22.9)	control:
>85	43.1% > 75			64.3% > 75
Male	yrs	103 (3.9)	289 (8.7)	yrs
Female		172 (6.5)	463 (14)	7.0
Heart disease		1,906 (72.1)*	2,623 (79.2)	
		Zoni Beri	sso et al. Am J	Cardiol 201

Lifetime pattern of AF and the risk of stroke and death in a population-based cohort of men (from the Manitoba Follow-Up Study)

Risk of stroke by pattern of atrial fibrillation

								Interaction Model				
		Age-adjust	Age-adjusted Adjusted*		N	No Antithrombotic*, [†]			Antithrombotic*, [†]			
	HR	95%CI	Р	HR	95%CI	Р	HR	95%CI	Р	HR	95%CI	Р
Free of AF	1.00	Ref.		1.00	Ref.		1.00	Ref.		1.71	1.46-2.00	< 0.0001
Newly diagnosed AF	1.85	1.19-2.88	0.006	1.71	1.10-2.66	0.02	1.96	1.07-3.58	0.03	0.74	0.31-1.78	0.50
Intermittent AF - In Sinus	1.35	0.95-1.92	0.09	1.02	0.72-1.45	0.9	1.77	1.10-2.84	0.02	0.38	0.19-0.75	0.006
Intermittent AF - In AF	1.07	0.34-3.32	0.9	0.68	0.22-2.13	0.5		n/e [‡]			n/e‡	
Sustained AF	2.20	1.58-3.06	< 0.0001	1.85	1.33-2.59	0.0003	2.49	1.57-3.97	< 0.0001	0.57	0.30-1.10	0.09
Antithrombotic therapy †		N/A		1.58	1.37-1.85	< 0.0001		N/A		N/A		

N/A = Not applicable.

* Adjusted for Age, Heart failure, Diabetes mellitus, Antihypertensive therapy, Cancer, Smoking.

[†]Antithrombotic therapy = Antiplatelet or anticoagulant.

 i^{\dagger} n/e = not estimable due to insufficient event counts.

More atrial fibrillation more risk !!

Risk of death by pattern of atrial fibrillation

							Interaction Model					
	Age-adjusted		Adjusted*		No Antithrombotic*, [†]			Antithrombotic*, [†]				
L	HR	95%CI	Р	HR	95%CI	Р	HR	95%CI	Р	HR	95%CI	Р
Free of AF	1.00	Ref.	-	1.00	Ref.	-	1.00	Ref.	-	0.52	0.47-0.58	< 0.0001
Newly diagnosed AF	1.92	1.55-2.38	< 0.0001	2.03	1.64-2.52	< 0.0001	1.87	1.44-2.41	< 0.0001	1.37	0.87-2.18	0.2
Intermittent AF - In Sinus	1.46	1.24-1.73	< 0.0001	1.71	1.44-2.03	< 0.0001	1.52	1.21-1.93	0.0005	1.31	0.93-1.85	0.1
Intermittent AF - In AF	1.90	1.25-2.90	0.003	2.41	1.58-3.68	< 0.0001	2.61	1.48-4.61	0.0009	0.87	0.37-2.03	0.8
Sustained AF	2.08	1.78-2.44	< 0.0001	2.48	2.11-2.92	< 0.0001	2.40	1.95-2.94	< 0.0001	1.12	0.81-1.54	0.5
Antithrombotic therapy †		N/A		0.55	0.49-0.60	< 0.0001		N/A		N/A		

N/A = Not Applicable.

* Adjusted for Age, Heart Failure, Diabetes Mellitus, Antihypertensive therapy, Cancer, Smoking, Ischemic Heart Disease.

[†]Antithrombotic therapy = Antiplatelet or anticoagulant.

McIntire et al. Am J Cardiol 2018

Italian survey on atrial fibrillation management

-

haracteristic	n (%)	Patients undegoind
Gender		
Male	112 (64.4)	2% ablation
Female	62 (35.6)	4% adiation
Age (yrs)	62 (33.6)	
16-50		
Male	15 (8.6)	
Female	4 (2.3)	
51-65	4 (2.5)	
Male	46 (26.4)	
Female	46 (26.4) 15 (8.6)	
66-75	15 (8.0)	
00-75 Male	34 (19.5)	
Female		
	25 (8.6)	
>75	17 (0.8)	
Male	17 (9.8)	
Female	18 (10.3)	000/
Atrial fibrillation type	21 (12 5	98%
Paroxysmal	34 (19.5)	
Persistent	140 (80.5)	
Heart disease	97 (55.7)	
Previous cardioversion		
0	24 (13.8)	
1-3	90 (51.7)	
>3	52 (29.9)	
Unknown	8 (4.6)	Conservation and the second strengthe
Symptoms leading to ablation		General population
Palpitations	144 (82.8)	
Dyspnea	83 (47.7)	
Asthenia	90 (51.7)	
Other	3 (9.8)	
Catheter ablation		
1	117 (67.2)	
2	40 (23)	
≥3	6 (3.4)	
Unknown	11 (6.3)	
Postablation antianthythmic drugs		
Propafenone	20 (11.5)	
Flecainide	41 (23.6)	
Amiodarone-dronedarone	46 (24.4)	
Combinations	11 (6.3)	
None	56 (32.2)	
Postablation antithrombotic therapy		
No	40 (23)	
Antiplatelet agents	38 (21.8)	
Oral anticoagulation	96 (55.2)	Zoni Berisso et al Am J Co

Zoni Berisso et al. Am J Cardiol 2013

Management of AF: the BLITZ - AF

Table I ER	Burden of atrial fibrillati	on/atrial flutte	r in the
	No of medical accesses in the ER	Hospital admissions	%
Total	364 134	60 332	16.6
For AF/af %	3689	1024	27.8

Table 4 Discharge

	Total (n = 4126)
In hospital events, n (%)	
lschaemic stroke	14 (0.3)
TIA	6 (0.2)
Haemorrhagic stroke	4 (0.1)
Peripheral embolism	8 (0.2)
Pulmonary embolism	10 (0.2)
Major bleeding	23 (0.6)
Heart failure	319 (7.7)
Acute coronary syndrome	95 (2.3)
Atrial fibrillation recurrence	111 (2.7)
Other CV events	131 (3.2)
Other non-CV events	112 (2.7)
Deaths, n (%)	48 (1.2)
lschaemic stroke	1 (2.1)
Haemorrhagic stroke	1 (2.1)
Heart failure	25 (52.1)
ACS	3 (6.3)
Other, CV	8 (16.7)
Other, non-CV	10 (20.8)

Table 3 Atrial fibrillation management

	Total (n = 4126)
	10ta((1 = 4120)
Transthoracic echo, n (%)	3314 (80.3)
Transoesophageal echo, n (%)	673 (16.3)
Coronary angiography, n (%)	514 (12.5)
Coronary revascularization, n (%)	153 (3.7)
24 h Holter monitoring, n (%)	576 (14.0)
Electrophysiological study, n (%)	141 (3.4)
Cardioversion performed, $n(\%)^a$	1599 (38.8)
Electrical cardioversion, $n (\%)^{a}$	1000 (24.2)
Transthoracic	988 (98.8)
Transoesophageal	5 (0.5)
Internal, n (%)	8 (0.8)
Pharmacological cardioversion, $n (\%)^a$	674 (16.3)
Cardioversion planned, n (%) ^a	111 (2.7)
Electrical	107 (96.4)
Pharmacological	5 (4.5)
Ablation performed, n (%)	185 (4.5)
A-V node	27 (14.6)
Pulmonary vein	158 (85.4)
Ablation planned, n (%)	33 (0.8)
Device implant, n (%)	495 (12.0)
Left atrial appendage occlusion, n (%)	27 (0.7)

Gulizia et al. Europace 2018

In-hospital mortality in patients with atrial arrhythmias: the German experience

LA ablation in 21744/161502 pts (13.5%) increased over time

Konig et al. Eur Heart J 2018

Treatment of AF with CA or AADs: two meta-analysis

Table 4. Characteristics of Patients With AF Undergoing Catheter Ablation and Receiving AAD Therapy

		Catheter Ablat	ion	AAD			
Baseline Characteristic	t n		Mean (Range)	t	n	Mean (Range	
Total patients							
Mean age, y	69	6936	55.5 (41-67)	57	6589	61.6 (38-70)	
Mean No. drugs refractory	62	5206	2.6 (1-5)	8	535	1.7 (0-3)	
Mean duration of arrhythmia, y	56	6096	6.0 (1-9)	19	1891	3.1 (0-11)	
Mean LA size, mm	57	5899	41.6 (35-50)	33	3423	43.7 (33-49)	
Mean LV ejection fraction, %	43	4655	57.7 (49–71)	34	3510	49.0 (25–67	
	t	n/N	%	t	n/N	%	
Sex							
Male	69	4553/6321	72.0%	46	358/5662	64.6%	
Female	69	1768/6321	28.0%	46	2004/5662	35.4%	
Type of AF							
Paroxysmal	72	5189/7437	69.8%	35	2529/4481	56.4%	
Persistent	67	970/6494	14.9%	34	1572/4475	35.1%	
Permanent (long-standing)	62	843/6085	13.9%	40	376/5011	7.5%	
Comorbid conditions							
Previous ablation	25	120/2888	4.2%				
Ischemic heart disease	26	326/3247	10.0%	36	846/4660	18.2%	
Nonischemic heart disease	3	12/272	4.4%	2	0/200	0.0%	
Valvular heart disease	19	130/2327	5.6%	27	485/3022	16.0%	
Structural heart disease	49	1341/4381	30.6%	10	522/1055	49.5%	
Cardiomyopathy	3	39/254	15.4%	13	88/2361	3.7%	
Dilated cardiomyopathy	11	218/1576	13.8%	8	96/1607	6.0%	
ARVC/D	3	18/323	5.6%				
CHF	4	34/216	15.7%	12	207/843	24.6%	
Congenital heart disease	2	6/198	3.0%				
Hypertrophic cardiomyopathy	11	52/1419	3.7%	1	0/127	0.0%	
ICD				3	22/665	3.3%	
Prior cardiac surgery (PCI/CABG)	3	0/767	0.0%	3	72/173	41.6%	
Stroke	2	24/725	3.3%				
Diabetes	8	60/1253	4.8%	7	214/1772	12.1%	
Hypertension	31	937/3094	30.3%	40	1888/4912	38.4%	
Medication history							
Anti-arrhythmics	41	3406/3585	95.0%	8	321/884	36.3%	
Anticoagulants	1	45/45	100.0%	4	806/806	100.0%	

t indicates No. of treatment groups reporting characteristic; n, No. of patients with this characteristic; LA, left atrium; LV, left ventricular; N, No. of patients evaluated in studies reporting characteristic; ARVC/D, arrhythmogenic right ventricular cardiomyopathy/dysplasia; CHF, congestive heart failure; PCI, percutaneous coronary intervention; ICD, implantable cardioverter-defibrillator; CABG, coronary artery bypass graft.

Calkins et al. Circ Arrhythm Electrophysiol 2009

Treatment of AF with CA or AADs: two meta-analysis

Calkins et al. Circ Arrhythm Electrophysiol 2009

Treatment of AF with CA or AADs: two meta-analysis

 Table 5.
 Safety Outcomes for Patients With AF Undergoing

 Catheter Ablation
 Figure 1

Outcomes	t	n/N	%
Mortality			
Death overall	65	42/5781	0.7
Procedure-related	64	0/5192	0.0
Vascular access complications			
Arteriovenous fistula	32	1/2885	0.0
Bleeding	33	1/2960	0.0
Hematoma	38	17/3719	0.5
Pneumothorax	34	0/2974	0.0
Femoral artery pseudoaneurysm	34	15/3032	0.5
Periprocedure events			
Stroke, ischemic	62	17/5665	0.3
TIA	60	13/5467	0.2
Cardiac tamponade	63	45/5723	0.8
PE	60	3/5496	0.1
DVT	56	1/4758	0.0
Other embolism	57	10/5347	0.2
LA-esophageal fistula	60	0/5496	0.0
Other fistula	58	3/5407	0.1
Pericardial effusion	64	36/5719	0.6
PV stenosis*	65	91/5831	1.6
AV block	60	1/5496	0.0
CHF exacerbation	60	0/5496	0.0
Need for a pacemaker	46	4/3902	0.1
Total No. of patients with events	28	97/1964	4.9

t indicates No. of treatment groups; n, No. of patients with this adverse event; N, No. of patients evaluated in studies reporting this adverse event; %, percent of patients with adverse event of interest; TIA, transient ischemic accident; PE, pulmonary embolism; DVT, deep vein thrombosis; LA, left atrial; PV, pulmonary vein; AV, atrioventricular; CHF, congestive heart failure.

*>70% Stenosis (early, <7 days after ablation; late, >7 days after ablation).

Table 6. Safety Outcomes for Patients With AF Receiving AAD Therapy

	Overall		
Safety Outcomes	t	n/N	%
Mortality			
Death overall	33	120/4291	2.8
Sudden death	21	18/2900	0.6
Treatment-related death	22	15/3179	0.5
Not treatment-related death	20	40/3023	1.3
Adverse events			
CV events	10	58/1572	3.7
Bradycardia	19	44/2349	1.9
GI	16	97/1499	6.5
Neuropathy	4	48/969	5.0
Thyroid dysfunction	5	19/576	3.3
Torsades	12	16/2238	0.7
Q-T* prolongation	12	5/2034	0.2
Total No. of patients with events	24	989/3318	29.8
Discontinuations			
Total	32	1035/4347	23.8
Due to AE	32	384/3682	10.4
Due to inefficacy	12	229/1694	13.5
Due to noncompliance	4	19/457	4.2

t indicates No. of treatment groups; n, No. of patients with this adverse event; N, No. of patients evaluated in studies reporting this adverse event; %, percentage of patients with adverse event of interest; CV, cardiovascular; GI, gastrointestinal; AE, adverse events.

*Interval of the Q and T waves.

Calkins et al. Circ Arrhythm Electrophysiol 2009

Effect of on Morta Among P The CAB/

Douglas L. Packer, MD; Peter A. Noseworthy, M Alexander Romanov, N Riccardo Cappato, MD; James A. Reiffel, MD; J **IMPORTANCE** Catheter ablation is effective in restoring sinus rhythm in atrial fibrillation (AF), but its effects on long-term mortality and stroke risk are uncertain.

OBJECTIVE To determine whether catheter ablation is more effective than conventional medical therapy for improving outcomes in AF.

DESIGN, SETTING, AND PARTICIPANTS The Catheter Ablation vs Antiarrhythmic Drug Therapy for Atrial Fibrillation trial is an investigator-initiated, open-label, multicenter, randomized trial involving 126 centers in 10 countries. A total of 2204 symptomatic patients with AF aged 65 years and older or younger than 65 years with 1 or more risk factors for stroke were enrolled from November 2009 to April 2016, with follow-up through December 31, 2017.

INTERVENTIONS The catheter ablation group (n = 1108) underwent pulmonary vein isolation, with additional ablative procedures at the discretion of site investigators. The drug therapy group (n = 1096) received standard rhythm and/or rate control drugs guided by contemporaneous guidelines.

MAIN OUTCOMES AND MEASURES The primary end point was a composite of death, disabling stroke, serious bleeding, or cardiac arrest. Among 13 prespecified secondary end points, 3 are included in this report: all-cause mortality; total mortality or cardiovascular hospitalization; and AF recurrence.

RESULTS Of the 2204 patients randomized (median age, 68 years; 37.2% female; 42.9% had paroxysmal AF and 57.1% had persistent AF), 89.3% completed the trial. Of the patients assigned to catheter ablation, 1006 (90.8%) underwent the procedure. Of the patients assigned to drug therapy, 301 (27.5%) ultimately received catheter ablation. In the intention-to-treat analysis, over a median follow-up of 48.5 months, the primary end point occurred in 8.0% (n = 89) of patients in the ablation group vs 9.2% (n = 101) of patients in the drug therapy group (hazard ratio [HR], 0.86 [95% CI, 0.65-1.15]; P = .30). Among the secondary end points, outcomes in the ablation group vs the drug therapy group, respectively, were 5.2% vs 6.1% for all-cause mortality (HR, 0.85 [95% CI, 0.60-1.21]; P = .38), 51.7% vs 58.1% for death or cardiovascular hospitalization (HR, 0.83 [95% CI, 0.74-0.93]; P = .001), and 49.9% vs 69.5% for AF recurrence (HR, 0.52 [95% CI, 0.45-0.60]; P < .001).

CONCLUSIONS AND RELEVANCE Among patients with AF, the strategy of catheter ablation, compared with medical therapy, did not significantly reduce the primary composite end point of death, disabling stroke, serious bleeding, or cardiac arrest. However, the estimated treatment effect of catheter ablation was affected by lower-than-expected event rates and treatment crossovers, which should be considered in interpreting the results of the trial.

TRIAL REGISTRATION Clinical Trials.gov Identifier: NCT00911508

JAMA. 2019;321(13):1261-1274. doi:10.1001/jama.2019.0693 Published online March 15, 2019.

g Therapy

eanne E. Poole, MD; ny Pokushalov, MD; /ilber, MD; ccarelli, MD; ior the CABANA Investigators

Effect of catheter ablation vs. AAD therapy on mortality, stroke, bleeding, and cardiac arrest in AF patients: the CABANA study

Eligible patients were aged 65 years and older or

younger than 65 years with 1 or more risk factors for stroke (hypertension, heart failure, history of stroke, diabetes, or other heart problems)

had 2 or more episodes of paroxysmal AF or 1 episode of persistent AF in the prior 6 months

Effect of catheter ablation vs. AAD therapy on mortality, stroke, bleeding, and cardiac arrest in AF patients: the CABANA study

Kaplan-Meier estimates of the cumulative risk of death, disabling stroke, serious bleeding, or cardiac arrest (primary end point by intention-to-treat analysis). The median (25th, 75th percentile) length of patient follow-up was 4.1 years (2.5, 5.1) in the catheter ablation group and 4.0 years (2.5, 5.2) in the drug therapy group.

Effect of catheter ablation vs. AAD therapy on mortality, stroke, bleeding, and cardiac arrest in AF patients: the CABANA study

(2.5, 5.1) in the catheter ablation group and 4.0 years (2.5, 5.2) in the drug therapy group. B, The median (25th, 75th percentiles) length of patient

(2.5, 5.2) in the drug therapy group.

Effect of catheter ablation vs. AAD therapy on mortality, stroke, bleeding, and cardiac arrest in AF patients: the CABANA study

Figure 6. Recurrent Atrial Fibrillation After Blanking by Intention-to-Treat Analysis

Freedom from recurrence of atrial fibrillation following the blanking period in 1240 patients who used the study electrocardiogram event recorders (intention-to-treat analysis with death as a competing risk). The median (25th, 75th percentiles) length of patient follow-up was 4.3 years (2.8, 5.0) in the catheter ablation group and 4.3 years (2.7, 5.3) in the drug therapy group.

Effect of catheter ablation vs. AAD therapy on quality of life: the CABANA study

Mark et al. JAMA 2019

Effect of catheter ablation vs. AAD therapy on mortality, stroke, bleeding, and cardiac arrest in AF patients: the CABANA study

Kaplan-Meier estimates of the cumulative risk of death, disabling stroke, serious bleeding, or cardiac arrest (primary end point) by 6-month (A) and 12-month (B) per-protocol analysis. Figure includes patients randomized to catheter ablation who were ablated within 6 months (A) or 12 months (B) after randomization. It also includes all patients randomized to drug therapy, with follow-up censored

at crossover to ablation. A, The median (25th, 75th percentiles) length of patient follow-up was 4.1 years (2.6, 5.2) in the catheter ablation group and 4.0 years (2.5, 5.2) in the drug therapy group. B, The median (25th, 75th percentiles) length of patient follow-up was 4.2 years (2.6, 5.2) in the catheter ablation group and 4.0 years (2.5, 5.2) in the drug therapy group.

About the CABANA study

Camm Eur Heart J 2019

Impact of atrial fibrillation ablation on mortality, stroke and hospitalization for heart failure: a meta-analysis

Mortality (CABANA Treatment Received Analysis)

Saglietto et al. J Cardiovasc Electrophysiol submitted

Impact of atrial fibrillation ablation on mortality, stroke and hospitalization b) Stroke for heart failure: a meta-analysis

c) Hospitalization for heart failure

Study or				Hazard Ratio		
Subgroup	TE	SE	Weight	IV, Random, 95% CI		
Type = Matched database						
Reynolds 2012	-0.37	0.2570	17.6%	0.69 [0.42; 1.14]		
Chang 2014	-0.25	0.1814	30.6%	0.78 [0.55; 1.11]		
Srivatsa 2018	-0.60	0.1206	51.7%	0.55 [0.43; 0.70]		
Total (95% CI)			100.0%	0.64 [0.51; 0.80]		
Heterogeneity: Ta	$au^2 = 0.$	0121; Ch	ni ² = 2.76,	df = 2 (P = 0.25); $I^2 = 28\%$		

Total (95% CI)100.0%0.64 [0.51; 0.80]Heterogeneity: Tau² = 0.0121; Chi² = 2.76, df = 2 (P = 0.25); I² = 28%Residual heterogeneity: Tau² = NA; Chi² = 2.76, df = 2 (P = 0.25); I² = 28%

Saglietto et al. J Cardiovasc Electrophysiol submitted

Catheter ablation for atrial fibrillation with heart failure CASTE-AF

B Death from Any Cause

179

184

154

168

1.0 0.9 Ablation 0.8 Probability of Survival 0.7-0.6-Medical therapy 0.5-0.4-0.3-Hazard ratio, 0.53 (95% CI, 0.32-0.86) 0.2 P=0.01 by Cox regression 0.1 P=0.009 by log-rank test 0.0 12 24 36 48 60 0 Months of Follow-up No. at Risk 27

130

138

94

97

71

63

19

Marrouche et al. NEJM 2018

Conclusive remarks (1)

•In the past decades, data from RCTs showed that using antiarrhythmic drug therapy there was no significant difference between rate and rhythm control for atrial fibrillation both in the general population and in patients with heart failure

•Over the years, the use of catheter ablation has increased and it appears associated with a decreased in-hospital mortality

 In general, in Italy catheter ablation is less used than in other countries

Conclusive remarks (2)

•Althoug it is a complex study, the CABANA shows that, compared to antiarrhythmic drugs, catheter ablation decreases mortality/hospitalization and improves quality of life

•These data in favor of catheter ablation are corroborated by a wide body of evidence from propensity matched cohorts undergoing ablation or standard therapy showing that mortality, stroke and hospitalization rates are lower in pts undergoing ablation

•The benefit of catheter ablation is particularly evident in selected patients with heart failure