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Alexa
Call 911
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ARTICLE OPEN
Contactless cardiac arrest detection using smart devices

Justin Chan(®', Thomas Rea”?, Shyamnath Gollakota(®' and Jacob E. Sunshine (&
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Can the system be accurate ?
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2 SVM (RBF kernel):

5 AUC =0.9993 + 0.0003

=05
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A T AUC =0.9948 + 0.0022
Logistic regression:
AUC =0.9943 + 0.0014
Random forests:
AUC =0.9850 + 0.0038
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Results of a Large-scale, App-based Study to
Identify Atrial Fibrillation Using a Smartwatch:

The Apple Heart Study

Mintu Turakhia MD MAS and Marco Perez MD
on behalf of the Apple Heart Study Investigators

e vossasass Stanford MEDICINE



Overall Goal

To evaluate the ability of the irregular
pulse notification algorithm to identify
Afib and guide subsequent clinical
evaluation

[ Notification burden

[ Subsequent Afib diagnosis
[ Algorithm performance

[ safety

[ Pragmatic and generalizable
[ Scalable study procedures

Continue




Enroliment: 419,297; 24,626 age = 65

Enroliment:
Nov 29, 2017 — Jul 31, 2018

Last data collection:
Feb 25, 2019

% State population o

0.00 0.05 0.10 0.5 0.20

SD: 0.03%
Mean: 0.12%
Enrollment by State Adjusted for Census Population



Accuracy: Positive Predictive Values

Irregular Tachograms Irregular Pulse Notifications

@ Regular rhythm

Pulse , @ Suggestiveof AP _ . = 4 Notification
wave || ymm === M emeomm .
\J VY o 000000
TaChogram ‘ 1250ms 783MS‘ 920ms
Afib on Total Positive PPV* (97.5% Cl) Afib on Total Positive PPV (95% Cl)
ECG Patch Tachograms ECG Patch Notifications

72 86 0.84 (0.76-0.92
1,489 2,089 0.71(0.69-0.74) ( )
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“Big data” to inform clinical questions

npj

www. nature.com/npjdigitaimed

Digital Medicine

PERSPECTIVE
It is time to learn from patients like mine

Saurabh Gombarda'2, Alison Callahan?, Robert Califf?, Robert Harrington® and Nigam H. Shah?

OPEN

Clinicians are often faced with situations where published treatment guidelines do not provide a clear recommendation. In such
situations, evidence generated from similar patients’ data captured in electronic health records (EHRs) can aid decision making.
However, challenges in generating and making such evidence available have prevented its on-demand use to inform patient care.
We propose that a specialty consultation service staffed by a team of medical and informatics experts can rapidly summarize ‘what
happened to patients like mine’ using data from the EHR and other health data sources. By emulating a familiar physician workflow,
and keeping experts in the loop, such a service can translate physician inquiries about situations with evidence gaps into actionable
reports. The demand for and benefits gained from such a consult service will naturally vary by practice type and data robustness.
However, we cannot afford to miss the opportunity to use the patient data captured every day via EHR systems to close the
evidence gap between available clinical guidelines and realities of clinical practice. We have begun offering such a service to
physicians at our academic medical center and believe that such a service should be core offering by clinical informatics
professional throughout the country. Only if we launch such efforts broadly can we systematically study the utility of learning from
the record of routine clinical practice.

npj Digital Medicine (2019)2:16; https://doi.org/10.1038/541746-019-0091-3

INTRODUCTION

Randomized controlled trials (RCTs) are the gold standard of
clinical evidence and the bedrock of evidence-based medicine.
However, the cost of conducting RCTs, their narrow inclusion
criteria, and their focus on only a subset of patient demographics,

system must possess in order to support clinical decisions
including transparency, rapid turnaround, ease of use, the
relevance of answer, respect for users, and solid scientific footing.

We believe that such challenges—of getting reliable data out of
the EHR and satisfying the criteria of successful clinical decision

conditions, and treatments limits their applicability in the majority
of scenarios encountered daily by clinicians.' In 2011, Frankovich
et al.” reported a case of using electronic health records (EHRs) to
guide the clinical care of a patient in the absence of RCT-based
evidence, and in 2014, Longhurst et al.” outlined a future in which
health information systems help clinicians leverage patient data
stored in the EHR at the point of care. Despite the promise of
unlocking the treasure trove of EHR data to improve patient care,
the state of affairs has not advanced much since 2011. The
primary barriers are the methodological and operational chal-
lenges of distilling patient data into digestible clinical evidence
that a physician can act on.

A common narrative in the popular press is that EHRs,
combined with advanced computing and data science methods,
are ready to transform healthcare. Given the prewvalence of this
perspective, and the increasing volume and availability of EHR
data, one could imagine that it is feasible to extract knowledge
with a high clinical value from EHRs in a fully automated manner
with little expert input. However, much of the promise of the
healthcare data revolution™ is hype that fails to acknowledge the
complex nature of clinical decision making.® A “one size fits all”
solution is unlikely to work in such settings. Furthermore, medical
practitioners have highlighted ethics and safety concerns®’ in
turning over care decisions to machine-based systems that
operate over incomplete and biased EHRs®? without physician
input. Shortliffe et al.”? recently highlighted the six capabilities a

support—are best overcome via a specialty consultation service.
Such a service would use state-of-the-art analytic methods to
glean reliable insights out of the EHR and have medical domain
expertise to contextualize results for clinical decision making. Such
a service would be staffed by a team comprised of a clinical
informatics trained physician for interfacing with the requesting
provider and to provide clinical context when interpreting
findings, an EHR data specialist to create patient cohorts, and a
data scientist to perform statistical analyses. The setup as a
specialty consult is radically different from the popular paradigm
of self-serve Al-enabled tools that undertake data processing
behind the scenes and directly present the results to a physician
for interpretation. We believe that an “expert in the loop” set up is
Nnecessary to strike a balance between efficiency and rigor given
the limitations of the data, and the inference methods.'™

We launched an IRB approved pilot of such a service at our
academic medical center, to study the feasibility of integrating on-
demand evidence into routine patient care. We propose that such
a service should be core offering by clinical informatics profes-
nals throughout the country. For many medical centers, a
significant challenge in offering such a service—beyond the
staffing—is the rapid creation of patient cohorts. Depending on
available tools and personnel, cohort generation may take several
weeks, which is untenable for care decisions that must be made
within days. To enable the consult service, we have developed a
search engine that indexes patient timelines for building cohorts
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The Stanford Informatics Consult Service

Given a specific case, provide a report with a descriptive summary of
similar patients in Stanford’s clinical data warehouse, the common
treatment choices made, and the observed outcomes after specific

treatment choices.

An institutional review board approved study (IRB # 39709)

http://greenbutton.stanford.edu
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Machine learning approach

Input features

* Clinincal data
* Laboratory

Model training

* Mcchine Icarning
* Neural network

Climical apphication

* Imaging —
Pre-processing Model testing - Precision cardiology
« Feature extraction  ° —ross-validation

* New data

* Feature sclection

Cuocolo et al 2019
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@ E S C European Heart Journal (2019) 0, 1-9 CLINICAL RESEARCH

European Society doi:10.1093/eurheartj/ehz565 Coronary artery disease
of Cardiology

Machine learning of clinical variables and
coronary artery calcium scoring for the
prediction of obstructive coronary artery
disease on coronary computed tomography
angiography: analysis from the CONFIRM

registry



Predictive models for obstructive CAD in > 13,000 subjects
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ROC Curves for the various models
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ORIGINAL RESEARCH

Influence of Coronary Calcium on
Diagnostic Performance of
Machine Learning CT-FFR

Results From MACHINE Registry

Christian Tesche, MD,*"*° Katharina Otani, PuD,” Carlo N. De Cecco, MD, PuD,* Adriaan Coenen, MD,*'

Jakob De Geer, MD, PuD,? Mariusz Kruk, MD, PuD," Young-Hak Kim, MD, PuD,' Moritz H. Albrecht, MD,*

Stefan Baumann, MD,** Matthias Renker, MD,*' Richard R. Bayer, MD,*" Taylor M. Duguay, BS,”

Sheldon E. Litwin, MD,*" Akos Varga-Szemes, MD, PuD,” Daniel H. Steinberg, MD,"™ Dong Hyun Yang, MD, PuD,"
Cezary Kepka, MD, PuD,"” Anders Persson, MD, PuD,® Koen Nieman, MD,*"° U. Joseph Schoepf, MD*™



Machine Learning CT-FFR vs invasive FFR

CT-FFR=0.74 Invasive FFR = 0.74



Current Artificial Intelligence applications in clinical care

Diagnostics =
- Atrial fibrillation detection using ECG data (Cardiologs®) MVV
- Diastolic dysfunction detection using 2D US images //////

Cardiac Imaging

- Virtual model of the heart to predict failure from echocardiography images
(Philips HeartModel*)

- Coronary calcium scoring from non-contrast CT scans (Zebra Medical
Vision)

Therapy selection

- Selection of care pathways based on risk, costs predicted by artificial
intelligence (KenSci, Healthcheck, Corti Labs)

Continuous monitoring

- Continuos heart rate, ECG, biometric and user’s behavior tracking to predict
early signs of cardiovascular anomalies (Kardia, Fitbit, Cardiogram,...)
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Technological innovations impacting the quality of care

7 -~ Typical traditional medical research--;; -~ Al / machine learning medical research----

Research Question Research Question

* No hypothesis / does not matter
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Artificial Intelligence:
Hypothesis-free and
data-driven
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Results
The chicken or the egg!? ot
? - * Validate the hypothesis :( ): ® Predict new data (test set)
<zwd 7 . * Understand causalityand 1 £ ;ekq! Identify hidden patterns
W!( p mechanisms of diseases - * Learn the best action

[Kagiyama et al., 2019] R



On one side artificial intelligence reveals correlation.
On the other side, modeling & simulation reveals causality.

exploring predicting
identifying massive design system
correlations spaces dynamics identifying
causality

identifying constraining

quantifying system design understanding
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’b\\\\‘
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information features
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[adapted from Alber et al., 2019]



Technological impact in the near future: integration of artificial intelligence
and modeling to better understand the cardiac system, for which the
underlying data are incomplete and the physics are not yet fully understood

g L0

exploring ' " ’ ' predicting
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[adapted from Alber et al., 2019]



Modeling & Simulation

as a medical device

HeartFlow®
Cardiolnsight®

Current Modeling & Simulation applications in clinical care

Workstation

PHYSICIAN

L?ﬂv

FFRcr Results

iy
& Modeling

CT Images

@ HeartFlow-

3D Model of
Coronary Arteries

Computational

e

FFRer
Computation

[www.heartflow.com]



Yes, new technology will profoundly impact
the quality of care

It will be our duty to master it and combine it with
the understanding of our patients and their need



THANK YOU

for your

ATTENTION!




Many more Artificial Intelligence applications to come...

Structured data
2016 | Motoweni Eur Heart J Classification: Prognostic Using 69 clinical and CT parameters of 10 030 CAD patients, 3 ML model
prediction predicted mortafity better than fraditional statistics
2018 | Kakadiaris JAHA Classification: Prognostic Using 9 parameters that consist of ACC/AHA risk calculator, a ML madel
prediction showed better prediction than onginal AGC/AHA risk score.
2016 | Marula JACC Classification: Diagnosis of | Using clinical and echocardiographic parameters, ML algorithms
HCM discriminated HCM from ATH with 87% sensitivity and 82% specificity.
2019 | Lancaster JACC CV Imaging Clustering Using echocardiographic parameters that guidelines recommend for
assessment of LVDD, hierarchical clustering identified dusters that
discriminate patient prognosis better than guidelines-based classification
2019 | Casadang-Verzosa | JACC CV Imaging Clustering with Topological data analysiz was able b visualize patient-patient similanty
dimensionality reduction network that is oreated from 4 pamameters. Relative location of patients in
the network were associated with disease phenotypes and prognosis,
Unstructured data
Echocardiographic 2018 | Zhang Girculation Classification; Automeatic Using 14 035 echocardiograms, CNN enabied automatic classification of
images interpretation of views, identification of chambers, measurements of candiac volumes, and
echocardiography discriminafion of diseases from healthy controls {see text for details)
MR imapes 2018 | Thang Ratdiology Classification: Prediction of | In 212 pafients and B7 controls, algorithms were able to detect chronic MI
MI from non-enhanced MAI | (validated by LGE) with 90% sensitivity and 99% specificity using
nonenhanced cine MRL
LT images 2016 | Shandmi Med Image Anal Classification: Coronary Using 30 CTA of 250 patients, after localization of wolume of interest using
artery calcium in a vonel 3 CNNs, 2 CNNs were used to classify voxels to calcium or noncalcium.
Agatston score caloulated based on the vonel dassification showed
excellent agreement with reference standard (accuracy 83%).
ECG signals 2019 | Hannun Nat Med Classification: Amhythmia Using 91 232 single-lead EOG, trained algorthm showed better prediction
detection of 12 types of heart rhythm than cardiologist F-measure 0.84 w 0.78).
Heart sound signals | 2016 | Poles 2016 CinC Classification: Normal and Combination of AdaBoost and CHN showed 94 2% sensifivity and 77.8%
abnormal heart sound specificity for idenfhying abnormal heart sound in PhysioNet/CinG data
3et.
EHR 2019 | Mallya akiv Classification: Prognostic Using =23 000 pafients time-series data, LSTM algorithm successfully
prediction predicted the onset of heart failure 15 mo in advance (AUC 0.91)
EHR: medical letters | 2019 | Diller Eur Heart J Classification: Diagnosis, Using natural language processing, diagnosis (accuracy 91%) and
(tesd) gymptoms and prognosis gymptoms {90.6%) were extracted from medical letters. Also, prognostic
prediction using the same data was useful (HR 34.0)

ANN, artificial neural network; ATH, athlete; CAD,
coronary artery disease; CNN, convolutional neural
network; DNN, deep neural network; HCM,
hypertrophic cardiomyopathy; HR, hazard ratio; LGE,
late gadolinium enhancement; LSTM, long short time
memory; LVDD, left ventricular diastolic dysfunction;
ML, machine learning; RF, random forest; SVM, support
vector machine.

[Kagiyama et al., 2019]



